
Runtime Verification of Ethereum Smart Contracts

Joshua Ellul

⇤
, Gordon Pace

†
⇤†

Centre for Distributed Ledger Technologies, University of Malta, Malta

Department of Computer Science, University of Malta, Malta

⇤
joshua.ellul@um.edu.mt,

†
gordon.pace@um.edu.mt

Abstract—The notion of smart contracts in distributed ledger
systems have been hailed as a safe way of enforcing contracts
between participating parties. However, unlike legal contracts,
which talk about ideal behaviour and consequences of not adher-
ing to such behaviour, smart contracts are by their very nature
executable code, giving explicit instructions on how to achieve
compliance. Executable specification languages, particularly Tur-
ing complete ones, are notoriously known for the difficulty of
ensuring correctness, and recent incidents which led to huge
financial losses due to bugs in smart contracts, have highlighted
this issue. In this paper we show how standard techniques from
runtime verification can be used in the domain of smart contracts,
including a novel stake-based instrumentation technique which
ensures that the violating party provides insurance for correct
behaviour. The techniques we describe have been partially
implemented in a proof-of-concept tool CONTRACTLARVA, which
we discuss in this paper.

Index Terms—Distributed ledger technology, Smart contracts,
Blockchain, Runtime verification.

I. INTRODUCTION

Blockchain technology is changing the way in which com-

puter systems can regulate the interaction between real-world

parties in a variety of ways. In particular the notion of

smart contracts, effectively executable transactions enforced

implicitly by certain blockchain architectures themselves, have

opened opportunities before impossible without the participa-

tion of trusted central authorities or resource managers. The

term contract has been overloaded, from legal contracts which

identify ideal modes of behaviour as agreed between parties

(but which may not be adhered to), to programming language

contracts which support or enforce specification of expected

behaviour of parts of a system (e.g. pre- post-conditions in

Eiffel [Mey98] and behavioural interfaces [HLL

+
12]). Smart

contracts have added yet another use of this term, to refer to

actual executable code which is agreed upon by the partici-

pating parties, and which can be executed. Effectively, smart

contracts are executable specifications of the way state will

change on the blockchain.

Whether specifications should be executable or not has long

been debated in computer science (see [Fuc92] vs. [HJ89]).

However, what there is agreement upon, is that an executable

specification requires, out of necessity, a description of how to

achieve a desired state as opposed to simply describing what
that state should look like — and explaining how to achieve

something is more complex, and leaves more room for error

than describing what the behaviour should look like.

Thus, a legal contract may specify that “The service
provider is prohibited from keeping records pertaining to the

1) The casino owner may deposit or withdraw money from the casino’s bank, with
the bank’s balance never falling below zero.

2) As long as no game is in progress, the owner of the casino may make available
a new game by tossing a coin and hiding its outcome. The owner must also set
a participation cost of their choice for the game.

3) Clauses 1 and 2 are constrained in that as long as a game is in progress, the
bank balance may never be less than the sum of the participation cost of the
game and its win-out.

4) The win-out for a game is set to be 80% of the participating cost.
5) If a game is available, any user may choose to pay the participation fee and

guess the outcome of a coin toss to join the game. The game will no longer be
available.

6) The owner of the casino is obliged to reveal the coin tossed upon creating the
game within half an hour of a player participating. If the coin matches the guess,
the player’s participation fee and the game win-out is to be paid to the player
from the casino’s bank. Either way, the game then terminates.

7) If the casino owner does not adhere to clause 6, the player has the right to
declare a default win and be paid the participation fee and the game win-out
from the casino’s bank. At this stage, the game also terminates.

8) No player should be allowed to play more than three games in succession.

Fig. 1. A legal contract regulating a coin-tossing casino

user’s behaviour for longer than 1 month,” but a system

designed to satisfy this contractual agreement may do so

in a number of possible ways e.g. deleting a user’s records

immediately, deleting all records on the first day of every

month, or deleting records only just before they are one month

old. For instance, consider the natural language agreement

explaining how a casino owner and players will interact shown

in Fig. 1, and the function signatures of a smart contract which

concretely implements such a casino, follows:

contract Casino {

private uint bankBalance = 0;

function Casino () public { . . . }

function depositToBank () public { . . . }

function withdrawFromBank(uint _amount) public { . . . }

function createGame(. . .) public { . . . }

function placeBet(. . .) public { . . . }

function resolveBet(. . .) public { . . . }

function timeoutBet(. . .) public { . . . }

}

Consider clause 3 of the legal contract: “as long as a game
is in progress, the bank balance may never be less than the
sum of the participation cost of the game and its win-out.”
The smart contract may implement this in a number of ways,

for instance by stopping the casino owner from withdrawing

too much money when a game is in progress, or by altogether

stopping the owner from withdrawing money as long as a game

is in progress. From the player’s perspective, the manner in

which this is achieved is not important as long as the code

really ensures that there will remain enough money to pay

Joshua Ellul, Gordon Pace
Centre for Distributed Ledger Technologies, Department of Computer Science, University of Malta, Malta

joshua.ellul@um.edu.mt, gordon.pace@um.edu.mt

Workshop on Blockchain Dependability

158

2018 14th European Dependable Computing Conference

978-1-5386-8060-5/18/$31.00 ©2018 IEEE
DOI 10.1109/EDCC.2018.00036

Authorized licensed use limited to: Cornell University Library. Downloaded on September 01,2020 at 07:43:59 UTC from IEEE Xplore. Restrictions apply.

out in case of a player win. Ideally, the correctness of smart

contracts is verified statically at compile time, but using auto-

mated static analysis techniques to prove general properties

of smart contracts has had limited success and until static

analysis techniques and tooling for smart contracts develops

to provide a means of resolving application specific potential

bugs at compile time, runtime verification can provide an

interim solution.

This brings to the front one important issue with smart

contracts: indeed, smart contracts do exactly what they say

they do, but that might not be what was thought the contract

would do. Especially as smart contracts grow in complexity,

this issue becomes more important. Whether a contract is

written by one of the parties participating in a transaction,

or by an outsider, participating parties may rightfully fear that

there might be obscure ways in which others can exploit the

contract to their benefit. There have been well-known instances

of such smart contracts, for instance, on Ethereum [ABC17].

The problem boils down to one of program verification.

In order to address such concerns, one would need a more

abstract, less exploitable way in which one specifies what the

smart contract will or will not do — effectively writing a

(non-executable) specification. For instance, one might want to

ensure that, halfway through a multi-step transfer of resources,

none of the parties may initiate another transfer from within

the same contract (thus causing the first one to fail). Another

example can be that of a smart contract which regulates a

gambling scenario: the party playing the casino’s role cannot

reduce the winning stakes after a player has placed a bet.

Against such a specification, one can use testing to try to

identify potential bugs (or workarounds) or use formal static

analysis techniques. The former approach suffers from the fact

that it lacks complete coverage (there may lie undiscovered

bugs in execution paths which were not explored) while the

latter typically fails to scale up as smart contracts increase in

size and complexity.

In this paper, we propose to use techniques from runtime

verification [LS09] to ensure that all execution paths followed

at runtime satisfy the required specification, embodied in a

prototype tool we have built, namely CONTRACTLARVA

1

.

One of the challenges lies in what to do if a violation

does occur. In our approach we support different ways to

react to violations. At a simplest level, one can block the

smart contract from executing further (other than emptying its

content as specified in the property). However, we also support

an approach based on a stake-placing strategy in which any

party that can potentially violate the contract, pays in a stake

before running the contract, which will be given to aggrieved

parties in case of a violation, but returned to the original owner

if the contract terminates without violations.

This proposed violation resolution procedure can be applied

in a variety of settings, from when the developer of the

contract is one of the parties, and thus the other parties may

1

The name is inspired due to the automaton-based approach adopted as

used in Larva [CPS09], a runtime verification tool.

Fig. 2. Workflow using CONTRACTLARVA

request guarantees about their behaviour (possibly through a

negotiation phase), to when the developer may be a paid third

party, who may be asked to guarantee certain behaviour of the

contract.

II. A FRAMEWORK FOR SAFE SMART CONTRACTS

In the runtime verification framework we are adopting (see

Fig. 2), we enable the combination of a smart contract and

its specification. These are automatically transformed into a

safe contract which behaves just like the original one but,

in addition, can identify when the specification is violated

and trigger remedial behaviour. The framework allows for dis-

abling a smart contract upon the identification of a violation,

but it also takes advantage of the application domain, that of

smart contracts, to provide stake-based correctness guarantees,

in which a party is prepared to provide insurance that the

given contract satisfies a particular property. If the property is

violated, the violating party will pay the aggrieved party the

agreed upon insurance, ensured as part of the automatically

generated safe contract, all done in a decentralised manner.

The basic requirements of our framework are a decentralised

resource management system and smart contracts which can

be written in a language expressive enough to match a trace

to a given specification. A proof-of-concept version of the

framework has been implemented for Ethereum, transform-

ing smart contracts written in Solidity into safe ones. The

Turing completeness of Ethereum smart contracts allows the

implementation of a compliance engine which uses Ether for

guarantees.

A. Runtime Violation Reparation

Given that in runtime verification, violations of a property

are only discovered at runtime, what should be done (and

indeed what can be done) is debatable. Various strategies

have been proposed and adopted in the literature, ranging

from simply logging the violation or stopping the system

from advancing further, to more proactive approaches such

as enforcing behaviour [Fal10] or compensating for the unex-

pected behaviour. [CP14]. In general, however, most runtime

verification systems simply allow the specification engineer to

specify code which will be executed upon violation.

In the context of contracts, however, the particular domain

is more specific than that of general computer systems. Firstly,

we have the notion of parties participating in a contract. This

means that many properties can be associated with (i) a party

who can be held responsible for its violation; and (ii) a party

(or multiple ones) which can be identified as the aggrieved

159

Authorized licensed use limited to: Cornell University Library. Downloaded on September 01,2020 at 07:43:59 UTC from IEEE Xplore. Restrictions apply.

party in case of a violation. In addition, contracts typically

identify reparatory behaviour which will be enforced in case

of non-compliance [PS09].

In the case of smart contracts, we lie somewhere in between

the two domains. We have both executable code and a contract

over behaviour which is enforced, but with no means of

enforcing external behaviour as can be done in legal contracts.

For this reason, in our approach we support violation handling

by allowing the parties to specify reparation actions written as

code as part of the specification given to CONTRACTLARVA.

However, we have further developed a contract design pattern

which can be automatically engineered to allow parties to

place stakes as a guarantee in the case of contract property

violation.

Using our approach, contracts can be extended to offer

monetary reparation in case of violation. By associating a

contract property with (i) the party taking responsibility in case

of a violation; (ii) the aggrieved party or parties in case of a

violation; and (iii) the amount placed as a guarantee against

violation, our tool automatically weaves code into the contract

to ensure for each property that (i) the responsible party must

initially pay the stake corresponding to the reparation; (ii) if

the property is violated, then the aggrieved party receives the

reparation stake; and (iii) if the contract will be destroyed

without having violated the property, then the responsible party

gets back his stake.

The approach can be used even when the specification

includes constraints which may not be enforced by the smart

contract, but ones which the parties guarantee to each other.

For instance, a smart contract may allow to increase a wager

any number of times, but one of the parties is willing to

guarantee that she will not change the wager from her end

more than three times, with a payment penalty in case she

does not stick to this constraint. Interestingly, this allows for

mutual guarantees over a single smart contract e.g. one party

promising to not to change the wager more than three times,

while the other guarantees not to wager more than a certain

amount. This is more akin to a legal contract in which the

parties may violate the constraints, but will have to pay a

penalty if they do so.

B. Contract Properties

In order to specify properties, we adopt an automaton-

based approach, effectively a subset of the DATE (Dynamic

Automata with Timers and Events) as used in the runtime

verification tool Larva [CPS09], but without timers.

Such specifications monitor for events

2

over the contract and

enable the specification of event traces which are not desirable.

The choice of which events are monitorable greatly influences

the overheads induced (for example, capturing variable change

events can be costly if the variable is frequently updated), but

also affects the expressiveness of the specification language.

In CONTRACTLARVA, we capture two types of events: (i)

2

The choice of the term event is unfortunately overloaded with the notion

of events in Solidity. In this paper, the use of the term is limited to the notion

of event triggers as used in DATEs unless explicitly otherwise noted.

Fig. 3. Contract specification examples (a) a betting table may not be closed

when there is a placed wager which has not been resolved; (b) generalisation

of the previous specification to allow for multiple simultaneous wages to be

placed on the table.

control-flow events corresponding to entry and exit points of

functions defined in contracts, written f#
and f"

to refer to the

entry and exit point of function f respectively; and (ii) data-

flow events corresponding to changes in values of variables,

written as v@e to denote the event when variable v is changed

and expression e (which can also refer to the previous value of

v as

 �v) holds e.g. winout@(winout <
 ����
winout) identifies points

in the execution of the contract when the win-out amount is

decreased.

At their most basic level, our specifications will be ex-

pressed as (deterministic) automata, listening to contract

events. States annotated with a cross denote that a violation

has occurred. For instance, consider a smart contract which

allows for its initiator to open the gambling table (openTable),

on which other users may place a wager (placeWager), and

then resolve it (resolveWager) any number of times. The table

creator may close down a table (closeTable) as long as it has no

unresolved wagers. The automaton shown in Fig. 3(a) ensures

that a violation is identified if the table is closed when a wager

has been placed but not resolved.

The automata used are, however, symbolic automata —

in that they may use and manipulate variables. Transitions

are annotated by a triple: e | c 7! a, where e is the event

which will trigger the transition, c is a condition over the state

of the contract (and additional contract property variables)

determining whether the transition is to be taken, and finally

a is an executable action (code) which will be executed if the

transition is taken. Fig. 3(b) is a generalisation of the previous

property, to handle the case when multiple wagers may be

simultaneously placed and resolved on the same table. The

actions typically impact just a number of variables local to

the monitors (i.e. not the state of the system itself), although

in some cases, however, specifically in the case of a property

violation, one may choose to change the system state in order

to make up for violated invariants.

For the formal semantics of this notation, the interested

reader is referred to [CPS09].

C. Instrumenting the Monitors

One consideration in the development of a runtime verifi-

cation tool is that of how the monitors will be instrumented.

160

Authorized licensed use limited to: Cornell University Library. Downloaded on September 01,2020 at 07:43:59 UTC from IEEE Xplore. Restrictions apply.

Although the consideration is internal in that it is invisible

to the user, the choice of instrumentation policy can have a

direct affect on performance. We have identified two main

approaches which can be used to instrument monitors in a

smart contract setting:

a) Monitoring as a separate contract: One way of in-

strumenting the monitor is to translate the specification into

a separate smart contract, which is sent the relevant DATE

event triggers from the monitored contract. The monitoring

smart contract provides all the functionality to keep track

of the state of the DATE and updating it upon receiving a

DATE event from the original contract. This approach allows

the monitoring of multiple smart contracts against a common

specification, with the monitor effectively acting as an or-

chestrator. The major challenge is that the separate monitor

does not necessarily have access to the state of the original

smart contract, and thus, information about the condition on

a transition has to be passed with the event trigger itself, and

actions may have to trigger functions in the original contract.

b) Inlined monitors: Another way of instrumenting the

monitor, is to instrument the code directly within the moni-

tored smart contract, adding functions implementing the logic

required to manage the configuration of the DATE within the

monitored smart contract itself. This ensures that the monitor

has full access to the local state, simplifying the logic imple-

menting the semantics of DATEs. An underlying assumption

with this approach is that the specification sees the smart

contract as a monolithic, stand-alone one, and specifications

do not span over the behaviour of different contracts.

In the current version of CONTRACTLARVA, we have

adopted the latter approach. Solidity source code of the smart

contract is parsed, to which monitoring logic is added. Code

is added to follow the logic of a DATE by implementing an

encoding of the configuration of the DATE, and providing

a function registerEvent to update the configuration upon

receiving a particular event. Solidity modifiers are used to

instrument actual invocations of this function in the main code

of the original smart contract. In order to deal with data flow

events, the contract is updated such that all variables which

appear in a v@e event are updated in order to enforce the

use of a setter function. Using this approach, v@e events

correspond to interception of calls to the setter function.

Upon reaching a violation or accepting state, action is

taken, depending on the violating-handling strategy adopted.

CONTRACTLARVA currently provides three violation-handling

strategies: (i) stop-upon-violation, which disables smart con-

tract behaviour once a violation is discovered; (ii) insurance-
against-violation, which adopts an escrow approach, initially

requires the responsible party to transfer into the contract

an amount specified within the specification, transferring it

back upon reaching an acceptance state but transferring it to

the aggrieved party if a violation is detected and blocking

all further behaviour; (iii) multiple-insurance-against-violation
acts just as in the previous case, but allows for the insurance

stake to be paid once again to re-enable the smart contract

after a violation. To ensure full flexibility, in all cases, we let

Fig. 4. Property which should be satisfied by the casino contract

payout from the contract upon violation to be managed via

events in the DATEs.

It is worth noting that the code generated is a direct imple-

mentation of the operational semantics of the subset of DATEs

used in the tool, thus ensuring that the verification algorithm

is correct. The lack of formal semantics for Solidity impede,

however, proving the correctness of the implementation of this

algorithm.

III. ILLUSTRATING THE FRAMEWORK

To illustrate the use of runtime verification on a smart

contract, we consider a smart contract for gambling on a coin

toss. The party setting up the contract takes the role of the

casino, and the smart contract allows them to manage their

reserves which will be used to pay out winners — allowing the

casino to add and withdraw payment from the pot. The casino

can also set up a game by sending an encrypted version of the

coin result (encoded by hashing an odd nonce to denote heads,

or an even one to denote tails) which a player may guess.

Once a game is set up, any other party may bet by depositing

an amount (which may not exceed the casino’s pot) and a

guess. The casino can then decide the outcome of the bet by

sending the original number to be verified against the guess.

The player may request a default win if the casino does not

deposit the original number within a specified time limit. The

casino may not initiate more than one game at a time, and only

one player can participate in a game. Throughout the process,

the casino may always deposit money into the pot, but may

only withdraw from it if there is no unresolved player bet.

Consider a specification which says that: As long as a casino
contract is active, the casino party may not withdraw from the
pot from the moment a player has placed a bet till when it is
resolved. This can be encoded as a DATE as shown in Fig. 4.

In order to show how monitoring can help, our imple-

mentation of depositing to the casino pot does not check

for potential overflow. Furthermore, the property is tagged to

use one-off stake-based violation handling, with the insurance

provider being the party representing the casino (who would

have invoked the constructor), and the aggrieved party in

case of a violation being the currently active player. Using

CONTRACTLARVA with the smart contract and the Casino
smart contract, we get an new SafeCasino smart contract with

the specification woven into the original code.

SafeCasino is almost identical to the original Casino except

that: (i) the SafeContract starts up the safe contract in a

state awaiting the insurance stake to be paid, until which all

functionality is disabled; (ii) a payStake function is added

to allow the owner (the creator of SafeContract) to pay the

required stake and enable the rest of the smart contract; (iii) the

161

Authorized licensed use limited to: Cornell University Library. Downloaded on September 01,2020 at 07:43:59 UTC from IEEE Xplore. Restrictions apply.

current state of the property DATE is encoded in SafeCasino,

and functions are added to initialise the state, and to update

it when an event is received; (iv) functions to handle the

situation when the property is satisfied (when an acceptance

state is reached, and the stake is paid back to its owner),

or a violation is identified (when a bad state is reached, the

stake is paid out to the player and all functions in the smart

contract are disabled); (v) a setter for variable pot (since it is

the only variable changes over which may trigger the property

transitions) to ensure that any update to the variable can trigger

monitoring; (vi) modifiers are created for all functions to

ensure that (a) the stake has been paid before proceeding,

and (b) to trigger any transitions. For example, a modifier

for placeBet is created, requiring the monitoring mode to be

active and a call is made to follow transitions whenever the

function is called, and before it is executed. This modifier is

added as the first one to the placeBet function:

modifier larva_aux_modifier_placeBet() {
require (larva_mode == LarvaMode.ACTIVE);

larva_DATE_transition(0);

_;

}
function placeBet()

larva_aux_modifier_placeBet . . .

Although the function withdrawFromPot checks the state of

the smart contract and does not allow for withdrawal during

a bet, we injected a bug in depositToPot (which the casino

can use to pay into the pot, and which may be invoked at

any time) by not checking for potential overflow. This may

lead to a payment into the pot and resulting in an overflow,

which will inadvertently decrease the pot. SafeContract will

immediately identify this violation, pay the player the stake

as compensation, and disable the contract. Furthermore, we

can specify the violation state to return the original bet to the

player and the rest to the casino.

IV. EVALUATING THE FRAMEWORK

Evaluating the overheads of a runtime verification tool is

very domain dependent. In the case of smart contracts, the

major metric is that of increased gas consumption due to

the additional monitoring code — a function of code size,

memory and execution time. Objective evaluation of a tool’s

performance is furthermore challenging since these depend

on the events and properties being monitored. For instance,

low-level properties, typically about events happening with

high-density result in higher overheads than business-level

properties which work on sparse events. Similarly, properties

which have a simple state to keep track of (e.g. pure control-

flow properties such as ‘the contract cannot be initialised more
than once’) yield lower overheads than ones which require a

complex monitoring state (e.g. a property which may require

keeping track of the users of a smart contract).

We have performed initial experiments with a real-life

smart contract, measuring the impact of monitoring on gas

consumption. We have used the Parity Multisig Wallet smart

contract [Tec17], looking at version 1.5 of the contract, which

included a vulnerability which led to the loss of 30 million

US dollars. It is worth noting that the smart contract allows

for multiple wallet owners (up to a maximum number), with

a specific number of required agreements from the owners to

allow a transfer from the wallet.

We have added two types of properties: (i) simple state

properties which use only the explicit state of the DEAs

to keep track of the runtime behaviour (e.g. a wallet may
not be initialised more than once); and (ii) additional state

properties, which require additional monitoring data structures

and code to keep track of the monitoring state through the use

of the conditions and actions on DEA transitions (e.g. the
number of required agreements may never exceed the number
of owners of a wallet3

). Based on these properties, we have

made a number of observations: (i) Initialisation is, by far,

where the major overhead appears — the increased size of the

smart contract and the initialisation costs result in a tenfold

execution cost (1100% gas consumption overhead

4

); (ii) Calls

to the smart contract which are not involved in the properties

yield minimal overhead (< 1% overhead); (iii) Calls which

affect only simple-state or stateless properties result in low

overheads (< 5% overhead); (iv) Calls which affect a complex

state obviously depend on the computation required, but can

be substantially higher — for instance, keeping track of the

owners of a wallet (i.e. duplicating part of the functionality of

the underlying smart contract) yielded 20% overhead. Though

performance penalties are introduced (much of which occur

at deployment time), we believe that the overall run-time

overheads justify the protection gained against potential losses

(as seen by infamous bugs can run into the millions).

The initial cost may seem over the top, but one has to keep

in mind that the contract we are monitoring is a relatively

small one (1k LOC, including comments), and thus, the code

and state added for monitoring can be proportionately high.

The high initial overheads result in the monitoring memory

requirements and increase in program size, and are partly

due to our choice to use DEAs as a specification language,

since much of the memory overheads are statically sized and

created upon initialisation. Since this is a one-off cost, and

dealt with by the creator of the contract (e.g. the person

offering a service), we believe that this is a reasonable choice

especially since it avoids extra overheads for others using the

contract, and is thus not necessarily a show-stopper. The low

overheads for simple-state properties indicates that runtime

verification of smart contracts can be viable in practice. On the

other hand, one has to be careful of additional symbolic state

3

To check this property we keep track of the owners of a wallet, requiring

additional data and code. We could have also chosen to trust the underlying

contract which already keeps track of this, but (i) it is safer to have a monitor

with possibly similar logic (but simpler since it keeps track for the sole

purpose of verification); and (ii) for some properties, we may not have the

luxury of reusing the system state.

4

Storage on the blockchain is accepted to be one of the most costly

operations. Given the relatively small size of the original contract, the

monitoring code and memory requirements is substantial, which explains

the large overheads for this use case. However, note that (i) this does not

grow proportionately as the smart contract grows; and (ii) this one-off cost is

amortized over the lifetime of the contract thus making it less of an issue.

162

Authorized licensed use limited to: Cornell University Library. Downloaded on September 01,2020 at 07:43:59 UTC from IEEE Xplore. Restrictions apply.

which can increase overheads substantially. One advantage of

our notation, as borrowed from the runtime verification tool

Larva [CPS09], is that the dividing line between what can be

efficiently monitored and what can result in more substantial

overheads is explicit in the specification notation. We are

currently running additional use cases to evaluate the use of

CONTRACTLARVA in a more thorough manner.

V. RELATED WORK

Despite the extensive literature on runtime verification of

computer systems and the use of contract logics for monitoring

compliance, there are currently no tools to enable runtime ver-

ification of smart contracts. The closest work in the literature

uses runtime verification to generate smart contracts which

monitor behaviour. For instance, for there is recent work to

do this to support business process monitoring [GPDW17],

[WXR

+
16], [PSHW17], where the recurring theme being

that of introducing a decentralised monitoring of independent

parties by using blockchains to shift trust away from a single

central trusted participant orchestrating the monitoring. Both

[GPDW17] and [WXR

+
16] use smart contracts to encode the

monitoring of the business processes, while [PSHW17] use

the Bitcoin blockchain encoding the monitoring in terms of

resource flow instead, due to the lack of smart contracts. In

contrast to our work, these works use blockchain and smart

contracts as an enabling and support technology for monitor-

ing, rather than use monitoring to support smart contracts.

There is also some work [BDLF

+
16] using formal static

analysis (as opposed to dynamic analysis) to analyse contracts

written in a subset of the Solidity language, but the approach

fails to scale up to many contracts.

Much of the work that uses contracts (in the wider sense

of the word) for monitoring (e.g. [HKZ12], [KPS08], [GR10])

uses contracts as specifications. The inbuilt nature of compli-

ance within smart contracts, which can be seen as a way of

regulating behaviour, but in fact do so by enforcing behaviour,

simply pushes the question of compliance one step away. The

Turing completeness of smart contracts comes at a price —

their correctness is uncertain. The most similar to our approach

is work such as [FPS09] and [GMS10], in which contract

descriptions are verified against properties. In [FPS09], con-

tracts are checked for conflicts, while [GMS10] uses model

checking to ensure properties of the contracts. However, in

such work, contracts are not executable objects, but rather

themselves specifications of ideal behaviour thus making the

approaches more akin to specification sanity checking.

VI. CONCLUSIONS

In this paper we have presented a runtime verification

approach to support dependability and correctness of smart

contracts, including a proof-of-concept tool implementation

of CONTRACTLARVA for Ethereum smart contracts written

in Solidity. The approach could easily be used to ensure that

smart contracts adhere to a given specification. For instance,

in the recent, widely reported case of a bug in a smart contract

implementing wallets, and which led to huge financial losses,

a specification property which stated that a wallet cannot

be initialised more than once, or that the ownership of a

wallet never changes once initialised could have identified the

violation and stopped the financial losses from occurring

5

.

REFERENCES

[ABC17] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey

of attacks on ethereum smart contracts (sok). In POST, volume

10204 of LNCS, pages 164–186. Springer, 2017.

[BDLF

+
16] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,

G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-

Pinote, N. Swamy, and S. Zanella-B´eguelin. Formal verification

of smart contracts. In The 11th Workshop on Programming
Languages and Analysis for Security (PLAS’16), 2016.

[CP14] C. Colombo and G. J. Pace. Comprehensive monitor-oriented

compensation programming. In Proceedings Formal Engineer-
ing approaches to Software Components and Architectures,
FESCA 2014, 2014.

[CPS09] C. Colombo, G. J. Pace, and G. Schneider. Safe runtime

verification of real-time properties. In Formal Modeling and
Analysis of Timed Systems FORMATS 2009, 2009.

[Fal10] Y. Falcone. You should better enforce than verify. In Runtime
Verification RV 2010, 2010.

[FPS09] S. Fenech, G. J. Pace, and G. Schneider. Automatic conflict

detection on contracts. In Theoretical Aspects of Computing
ICTAC 2009, 2009.

[Fuc92] N. E. Fuchs. Specifications are (preferably) executable. Software
Engineering Journal, 7(5):323–334, 1992.

[GMS10] D. Gor´ın, S. Mera, and F. Schapachnik. Model checking legal

documents. In Legal Knowledge and Information Systems -
JURIX 2010: The 23rd Annual Conference on Legal Knowledge
and Information Systems, pages 151–154, 2010.

[GPDW17] L. Garc´ıa-Ba˜nuelos, A. Ponomarev, M. Dumas, and I. Weber.

Optimized execution of business processes on blockchain. In

Business Process Management BPM 2017, 2017.

[GR10] G. Governatori and A. Rotolo. Norm compliance in business

process modeling. In Semantic Web Rules - International
Symposium, RuleML 2010, pages 194–209, 2010.

[HJ89] I. Hayes and C. B. Jones. Specifications are not (necessarily)

executable. Softw. Eng. J., 4(6):330–338, November 1989.

[HKZ12] T. Hvitved, F. Klaedtke, and E. Zalinescu. A trace-based model

for multiparty contracts. J. Log. Algebr. Program., 81(2):72–98,

2012.

[HLL

+
12] J. Hatcliff, G. T. Leavens, K. Rustan M. Leino, P. M¨uller, and

M. J. Parkinson. Behavioral interface specification languages.

ACM Comput. Surv., 44(3):16:1–16:58, 2012.

[KPS08] M. Kyas, C. Prisacariu, and G. Schneider. Run-time monitoring

of electronic contracts. In Automated Technology for Verification
and Analysis ATVA 2008, 2008.

[LS09] M. Leucker and C. Schallhart. A brief account of runtime

verification. J. Log. Algebr. Program., 78(5):293–303, 2009.

[Mey98] B. Meyer. Design by contract: The eiffel method. In TOOLS
(26), page 446. IEEE Computer Society, 1998.

[PS09] G. J. Pace and G. Schneider. Challenges in the specification of

full contracts. In Integrated Formal Methods, 7th International
Conference, IFM 2009, pages 292–306, 2009.

[PSHW17] C. Prybila, S. Schulte, C. Hochreiner, and I. Weber. Run-

time verification for business processes utilizing the bitcoin

blockchain. CoRR, abs/1706.04404, 2017.

[Tec17] Parity Technologies. Parity wallet. https://github.com/paritytech/

parity, 2017.

[WXR

+
16] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev,

and J. Mendling. Untrusted business process monitoring and

execution using blockchain. In Business Process Management
BPM 2016, 2016.

5

Needless to say, it is easy to identify properties post-factum.

163

Authorized licensed use limited to: Cornell University Library. Downloaded on September 01,2020 at 07:43:59 UTC from IEEE Xplore. Restrictions apply.

