2016 IEEE 40th Annual Computer Software and Applications Conference

Interactive Incontestable Signature for
Transactions Confirmation in Bitcoin Blockchain

Yan Zhu, Ruiqi Guo, Guohua Gan
School of Computer and Communication Engineering
Univerisity of Science and Technology Beijing, 100083
Email:yanzhu @ustb.edu.cn

Abstract—Blockchain is a radical innovation that has a sig-
nificant impact on payments, stock exchanges, cybersecurity,
and computational law. However, it has significant limitations
regarding uncertainty for a transaction to be confirmed. This
paper proposes a new system for exact confirmation of transac-
tions in a block. Replacing original signature, a new Interactive
Incontestable Signature (IIS) scheme is used between dealer and
owner to confirm a transaction. By this signature, the dealer
can assure the owner that a transaction will be included into
blockchain in a non-repudiation way. The scheme is proved to
be secure for owner’s unforgeability and dealer’s incontestability.

Index Terms—Blockchain, Signature, Interactive Proof.

I. INTRODUCTION

Blockchain, as the core technology behind Bitcoin, has seen
widespread use recently. It provides a decentralized and con-
sistent mechanism, and promises to become an infrastructure
for various application fields, such as online payments, stock
exchange, cybersecurity and computational law. This technol-
ogy has been a primary focus of interest from many financial
institutions, e.g., venture capital invested in blockchain-related
companies has accelerated considerably over the past three
years and is on track to top $600 million in 2015 [1]. Currently,
the foundational layer and infrastructure necessary to support a
rich ecosystem of blockchain-based applications and services
is being established.

Despite its potential, blockchain faces many barriers as well.
At present, the major kind of faults produced in blockchain is
block conflict, which indicates that a fork in the blockchain can
occur if two blocks are published nearly simultaneously. The
current solution for conflict is based on “Longest Chain Rule”
(LCR) [2]: if you see multiple blocks, treat the longest chain
as legitimate. This means that node follows the protocol rule
that they will only try to extend the longest branch they know
about. This rule causes a few of transactions on the wrong side
of the fork to be delayed since they would be reorganized into
new blocks (called blockchain reorganization). It also faces
risks if double-spending attack is attempted. In the current
implementation, a new block is generated about every 10
minutes [2]. The uncertainty of whether an established block
is in the prevailing branch leads to a common rule that a given
transaction is not confirmed until it is at least 6 blocks deep
in the chain.

Though the conflict could be resolved, “instant confirma-
tion” is still hard to reach. The confirmation is a verification

0730-3157/16 $31.00 © 2016 IEEE
DOI 10.1109/COMPSAC.2016.142

443

Wei-Tek Tsai
School of Comp., Info. and Dec. Systems Engineering
Arizona State University, 85287
Email: wtsai@asu.edu

process that offers a final proof after validating a certain
transaction. It is necessary, whenever a transaction is received,
to get confirmation from other nodes on the network that the
transaction is indeed valid. In Bitcoin, however, there is no
notion of “instant confirmation”, due to the following reasons:

e A transaction is implicitly confirmed through being in-
cluded into a block which is followed up by approximate
6 blocks (as described above). This process, taking at
least one hour, causes a high confirmation latency.

Even after such a long wait, the transaction is not
confirmed in total finality (which means the transaction
is permanently included into the blockchain). In fact, it
just offers 99.9999% finality [3] after two hours as does
Bitcoin.

To check whether a transaction has been validated, client
needs to search the most recent 6 blocks (6 additional
blocks for an implicit confirmation, also called confirmed
by 6 blocks) after he/she publishes this transaction one
hour later. This is a large computational overhead because
the search volume is about 24,000 transactions.

The search volume discussed above is computed by 24,000=
6x4,000 according to maximum of roughly 4,000 transactions
per block (the average transaction size is around 200-250 bytes
and the block size is at most 1MB in Bitcoin currently).

To conclude the above discussions, “instant confirmation”
is still a challenge for the current blockchain. The important
takeaway though is that there is no absolute notion of “perma-
nently included” and the blockchain simply uses a reasonably
safe policy of considering transactions confirmed when they
are included with very high probability. The confirmation time
is quite variable, taking from tens of minutes to over two hours,
and on average it will take about an hour.

Contribution. In this paper we address the problem of im-
plementing the instant confirmation with incontestability in
blockchain. Based on two basic assumptions, we propose
an interactive signature protocol to achieve our goal. This
protocol, replacing the original signature scheme of trans-
actions, is called Interactive Incontestable Signature (IIS),
and it works between dealer and owner to implement the
instant confirmation with incontestability. By this signature,
the dealer can assure the owner that a transaction will be
permanently included in the blockchain in a non-repudiation

IEEE
computer
® psouety

way. In addition, this signature is short and easy-to-build in a
3-move simple way.

Our signature scheme is constructed on general bilinear

map group system. We also prove the security of scheme
under the unforgeability of owner and the incontestability of
dealer based on two extended computational bilinear Diffie-
Hellman assumptions, eCBDH; and eCBDHs, respectively.
Our experimental results shown that the scheme has good
properties: short signature, high performance, and low key
storages.
Organization. The rest of this paper is organized as follows:
Section II presents our system model and requirements. Our
construction and security analysis of Interactive Incontestable
Signature (IIS) is presented in Section III. The performance
evaluation is shown in Section IV. Finally, the conclusion and
future extensions are discussed in Section V.

II. SYSTEM MODEL
A. Design Objectives

Our model addresses the problem of building a blockchain
with more exact confirmation and higher performance than
existing blockchain. In order to achieve instant confirmation,
it is required that each transaction will receive feedback from
the block generator after it passes the verification process, and
generators cannot deny their prior verification behavior at any
time. Exactly, our work focuses on the following properties:

« Confirmability: represents the ability that a transaction
will not face the risk of becoming invalid later, once it is
appended into a new block.

« Incontestability: refers to the ability to ensure that the
block generator (Dealer) cannot deny the prior behavior
after the transaction is included into block in blockchain.

B. Our System

Our system is built on the existed Bitcoin Blockchain with
some improvements. The improvements contain two aspects:
one is that the dealer in our system is designated before the
beginning of generating block and unique at the same time,
and another is that the situation of ’blockchain reorganization”
is not expected to happen once new block is generated.

In order to design such a system, there is a need to introduce
a new concept, called accounting cycle, into our system, which
indicates the time interval between two contiguous generated
blocks in blockchain. The accounting cycle corresponds to
two basic assumptions: (1) there is one single dealer in
each accounting cycle, and (2) block conflict won’t occur
in blockchain (no fork). Obviously, these two assumptions
fail in existing blockchain protocol in Bitcoin. However, some
work necessary to hold them has already been done. Eyal et
al. [4] proposed a blockchain protocol that includes two block
types: the key blocks for leader election and the microblocks
for transaction storage. In their approach, leader election
ensures that only one node will be elected as the dealer to
generate a block in each accounting cycle. As a result, it
further eliminates the possibility of fork problem.

444

Our system model is shown in Fig.1. In each accounting
cycle, a set of transaction owners (e.g., O1,--- ,0,,) transmit
their transactions to the designated dealer; then the dealer au-
thenticates the transactions’ owners and validates transactions
respectively before processing confirmed transactions into new
block. This new block complies with the blockchain structure
in Bitcoin, which includes hash pointer between blocks and
merkle tree among transactions.

Dealer

Block Block Hash Block

pointer

Hash
pointer

Merkle
Root

Pre

H (H(A)[H(B)) H (H(C)|H(D))

| _Transactions ,l ,,,,,,,, l ,,,,,,,

Fig. 1. Our System Model on Interactive Incontestable Signature (IIS).

In our system, we add a new part Witness, which stores
identifiable information of the dealer, into each block. Once
a transaction is confirmed, a proof of validation (7ag) will be
generated and attached to the transaction. Any nodes in the
network can validate this 7ag with Witness published in the
block. Transaction with a valid Tag indicates that it is already
confirmed by the dealer, and it ensures the incontestability of
dealers by establishing relationship between valid transactions
handled by the dealer and identity of the dealer. We construct
an Interactive Incontestable Signature (IIS) scheme to create
such a relationship, and the formal definition of IIS is given
as follows:

Definition 1: (Interactive Incontestable Signature, IIS): An
Interactive Incontestable Signature (IIS) scheme consists of
a tuple of algorithms (Setup, OKeyGen, DKeyGen, WitGen,
Sign, Verify), as follows:

Setup: This algorithm outputs a parameter as the master
public key.

OKeyGen: For each owner, it outputs a owner’s public-
private key pair by himself, where the owner holds the
secret key but the public key is public.

DKeyGen: This algorithm outputs a dealer’s public-
private key pair, and the manager appends the public key
into the master public key.

WitGen: This algorithm generates a witness of a secret
number and outputs this witness.

Sign: This is an interactive proof protocol for yielding
signature between the dealer and the owner for a certain
transaction, and they interactively generate a message-
signature pair and outputs this signature.

Verify: This algorithm outputs 1 if it is a valid message-
signature pair, otherwise output 0.

Compared with the transitional signature, the above signa-
ture has several differences:

1) Either the owner or the dealer can generate the pub-
lic/secret key by himself for easy to use;

2) the process of generating signature is an interactive proof
process between two parties: dealer and owner;

3) the verification of signature requires two public keys of
both dealer and owner at the same time, which means
that this signature is permitted by both of them;

4) the witness is unique in each block and will be shared
in all transactions in this block, that sets up a strong
membership between all transactions and this block.

C. Security Requirements

In our system, there are three types of possible forgery
attacks as follows: (1) forge signatures by owners, (2) forge
signatures by dealers and (3) forge signatures by external at-
tackers. Note that in our system, the dealer need to authenticate
the owner of a certain transaction before they running IIS to
generate a signature. Therefore the unforgeability of external
attackers can be ensured by the process of authentication. We
therefore focus our security model on the other two security
requirements.

« Unforgeability of Owner. In this case, the owner of a
transaction may aim at skipping validation process to
forge a signature by himself/herself. This security re-
quires that the owner cannot produce any valid signature
even with unlimited computational resources.

« Incontestability of Dealer. This requirement guarantees
that the dealer cannot deny his/her signature once he/she
has generated this signature interactively with owners.

We expect that our signature is provably secure for the above
requirements. Moreover, this signature must have a small
impact on the original blockchain structure, as well as high
performance and easy-to-implementation.

III. OUR CONSTRUCTION

We set up our scheme using a bilinear map group system
which is obtained from general bilinear pairings. A bilinear
map group is a tuple S = (G, Gr, p,) where G, G are cyclic
groups of the same order p. We say that the function e is a
computable bilinear map e : G x G — Gy if for any g,h €
G,a,b € Z, then e(g*,h’) = e(g, h)**. We now describe a
concrete IIS scheme in Fig. 3, which is based on a bilinear map
system S = (G,Gr,p,e). In this scheme, the algorithm of
Sign including five steps is interactive proof process between
dealer and owner, that is shown in Fig. 2.

Based on bilinear map, the correctness of signature o;
generated interactively can be proved as follow:

e((pka) P, pk;) - e(H(T;), wits)

= e((g")"IP), g™ - e(H(T;), h*?)

— e(g™ M HUD) Y . e(H(T})™, h)

— e(g™ DY . F (T, 1) = e(o3, h)

(o]

w (sk, =d)

1. Use the secret a of
witness to compute

T=H(T)

lij (sk, =x,)

>

2. Select a random
number r

5. Calculate the signature

|
|
|
|
|
|
|
|
|
|
|
|
|
!
} o, =0, ||)1/r

|

| — g% DAy Ty
! g (1)

Fig. 2. Signature Generating Protocol.

Setup(1”) — mpk: This algorithm first generates the bilinear
group G, Gr of prime order p. Let g be the generator of G.
It chooses a random h € G and outputs mpk = (g, h).

OKeyGen(mpk, u;) — (ski,pk:): it selects a random ele-
ment xz; € Zj;, as sk; and calculates pk; = h™%.

DKeyGen(mpk, dealerq) — (sk;, pk;): For a certain dealer,

it selects a random element d € Zj; as skq and calculates
_ o d

pka = g°.

WitGen(mpk, ska) — W: For a certain dealer, it ran-

domly picks a secret element a € Z,. Then it calculates

wity, = g% wits = (h“)S’“d = 1% ¢ G and outputs

W = (witl, witz).

Sign(D(a, skq) > O(sk;))(mpk, W) — o;: It takes as input

the master public key mpk and witness W, secret a, skq

possessed by the dealer and sk; possessed by the owner. To

sign a transaction 7;, dealer and this owner carry out a two-

party protocol to calculate the signature, as follows:

1) The dealer calculates the hash value T = H(T;)® of
transaction 7T; together with his secret a € Zz*?’ and then
transmits 7' to the owner.

2) The owner randomly selects a number 7 € Zj,

3) The owner transmits o = (g = (g
H(T;)*)" to the dealer, where ID; is the ID of T;.

4) The dealer calculates o} = (o})? with his private key skq
and transmits o} = (g%# P . H(T;)*)™ to the owner.

5) Finally, the owner removes the random r and obtains the
signature o; = (o)}/ = ¢=HUDPId . [(T3)34, It outputs
a signature o; for 7;, where

o; = ggc,‘,dH(ID,',) .H(Ti)ad

Verify(mpk, pk;, pka, W, (Ti,0:)) — {0,1}: Given mpk,
the witness W and a message-signature pair (Ti,oi), this
algorithm checks the equation

e(oi, h) = e((pka) P pk;) - e(H(T), witz)

Output 1 if it is holds. Otherwise output 0.

Fig. 3. The full construction of Interactive Incontestable Signature (IIS).

A. Integrating with Blockchain

While the construction of the previous section gives an
overview of our approach, we have yet to describe how
our scheme integrates with blockchain. The general overview
of our approach is straightforward. To initiate a trans-
action to Bob, Alice first constructs a transaction infor-

Head Head
Pre-Hash Pre-Hash
No: 0 No: 0
signature signature
In
Pre-Hash Pre-Hash
No:O | g No: 1
signature signature
0 0
Value Value
Address: pk_0 Address: pk_0
Out 1 1
Value P Value
Address: | pk_1 Address: pk_1
Tag Tag
\ b
Validation

Fig. 4. How other nodes verify a certain transaction contained in block.

mation T'4. T4 contains pkp (generated by Bob running
OKeyGen(mpk, up)), transaction content and a simple signa-
ture produced by Alice (only used between Alice and dealers
who generate the next block). Then she broadcasts T4 to the
network.

To create a new block, the dealer runs WitGen(mpk, skq)
and stores witness W in the block for validation. The dealer
searches for all transactions collected in this accounting cycle
and verifies transaction content. Here, we take 74 for example,
the dealer first authenticates Alice’s identity through its orig-
inal signature and checks whether 74 is a valid transaction.
If these conditions hold and the referenced transaction is not
claimed as an input into a different transaction (avoid double-
spending), the dealer and Alice then run interactively the Sign
protocol to generate a new signature o4 as a T'ag, replacing
the original one.

When this block has been built, other nodes in the net-
work examine whether T4 is a valid transaction by run-
ning Verify(mpk, pka, pka, W, (Ta,04)) algorithm. Fig. 4
illustrates this verification process in detail. They first get
Tag attached to T4, the witness stored in the block and
Alice’s pk, in the corresponding out field of the referenced
transaction which can be found through the hash chain. If
Verify(mpk, pka, pkq, W, (Ta,04)) = 1 and the referenced
transaction is not claimed as an input into a different trans-
action, T'4 is regarded as valid and they continue to examine
other transactions in this block; otherwise, if verify algorithm
return O or the referenced transaction has been claimed, T4
is regarded invalid and they discard this block. Finally, if all
transactions pass this validation process, the network accepts
this block as valid and appends it to the blockchain.

B. Security Analysis

We now analyze the security of our construction. Consider-
ing that the unforgeability of external attackers is ensured by
the authentication process as we discussed above, we focus the

446

attention on two types of security properties (unforgeability of
owner and incontestability of dealer). We will analyze these
two properties as follows:

1) Unforgeability of Owner: At first, we define the unforge-
ability of owner based on the general security definition of
signature, as follows:

Definition 2: A signature scheme is (t,q0,qD,qu, €)-secure a-
gainst the unforgeability of owner if any adversary </ breaks our
scheme with a negligible probability €, the advantage

VETify(mpk,pki,pkd, VV7 Ti*’ U:) =1:
Setup(1®) = mpk;
{pki}(_JZ{10KeyGen(anlc,ui):(ski,plci)7
{pkd} . %DKeyGen(mpk,dealeTj):(skd,pkd)
WitGen(mpk, ska) = W,
m({pk’b}ﬁ {pkd}v W) = (Ti*v U:)

for t time, qo and qp times queries for dealer and owner, and qu
times queries for the hash Oracle.

Advg, = Pr

)

The unforgeability of owner of our proposed scheme is
based on extended Computational Bilinear Diffie-Hellman
(called eCBDH;) assumption, which is defined as follow:

Definition 3: (extended-CBDH; Assumption) Given
G,H,G* H* H® € G for unknown a,b € Z*, the eCBDH,;
assumption states that it is computationally intractable to
compute the value of G,

Next, we prove that our scheme is unforgeability of owner
according to the following theorem:

Theorem 1: Let G be a (t',¢") group for Hiffie-Hellman of
order p. Then the signature scheme on G is (t,q0,qp, qH, €)-
secure against the unforgeability of owner, where

t <t'—2(logp)(go +qp +qu), €>¢

We assume an adversary A breaks our interactive signature
scheme. We will use A to construct a simulator B that breaks
two types of extended-Computational Bilinear Diffie-Hellman
problems which we will define later in this section. The proof
process is shown in Fig. 5.

problem

setup : mpk

Adversary A

Simulator B

learning :{pk.},{pk,}

eCBDH
Problem

hashQuery :{H(T)}

Interactive
signature
scheme

challenge: W

result response: (T *,c,*)

Fig. 5.

The diagram of proof process in Theorem 1.

Proof: Suppose there exists an PPT adversary .7 that
outputs a forged signature for the interactive signature scheme
with a non-negligible advantage e. We can use the algorithm
@/ to construct a PPT algorithm Z; that can break the
eCBDH; problem: for z,y € Zj, given G, H,G*, H*, HY €
G, compute G*Y € G. Algorithm %, is described as follows:
« Setup: Given an eCBDH; problem (G, H,G*,H* HY €

G), the algorithm %; runs the Setup to generate the msk,
and calculates mpk = (9 = G,h = H).

<e

’

Learning: <7 can issue up to qo owner-key queries and
qp dealer-key queries. In response, %, runs as follows:

— Owner-key queries. Given an owner’s index ¢, %) choos-
es a random number \; € Z;. Assuming that sk; = y\;,
the public key is computed as pk; = (HY)*:. %, sends
pk; to .

— Dealer-key queries. Given an dealer’s index j, %; choos-
es a random number (; € Z;. Assuming that skq = x;,
the public key is computed as pkq = (G*)%. %, sends
pkq to .

o Hash Query: </ can query a Hash Oracle up to gz times
as H(T;) = G"™), where there is a map: {0,1}* — Z7
and h(T;) € Zs,.

Challenges: %, runs the WitGen to generate W =
(wity, wity). Tt computes wit, = g* = G, wity = h*? =
(H®)*, and sends W to <7 as a challenge.

Response: The adversary .o#) calculates a message-signature
pair (T, 0}) in a polynomial time, and then sends it to %;.
o Output: %, checks whether it is a valid pair by examining

e(of h) = e(pky TPV pkl) - e(H(TY), wits).

If this equation holds, this means that o is a valid signature.
And then %; computes G*Y = (o /(G®)M(T7)a)l/HID])
and returns this value as the final result.

We now analyze the validate of the above construction as
follows: The last equation used to check the validity of forged
signature according to the equation:

e(pkf(ID:)/Cj,pkzl/Al)) E(H(TZ*),thg)
= e((Gz)CJH(ID?)/CJ7 (Hy)/\i/kvz) . e(Gh(TZ‘)7 (H®)%)
— e(nyH(ID;‘)qth(T:):ca H)

Also, the above algorithm Z4; is a probabilistic polynomial
time (PPT) algorithm only if the adversary .o} can return the
result within a polynomial time. This also means the PPT
algorithm %; can solve the eCBDH; problem with a non-
negligible probability. This contradicts the hypothesis that the
eCBDH; problem is hard for any PPT algorithm. That is, the
advantage of any probabilistic polynomial time algorithm %
in solving the the eCBDH; is negligibly small.

Advig PP = Pr(2(G, H,G*, H*, HY) = G"]
Veri fy(mpk, pki, pka, W, T}, 07) = 1:
'Q{I({pkl}7 {pkd}a W) = (]11*7 o-z*)

The algorithm Z;’s running time includes the running time
of forgery. The additional overhead imposed by %4, is dom-
inated by the need to evaluate group exponentiation for each
signature, key request and hash request. Any one such such
exponentiation may be computed by using at most 2logp
group action [5], and thus at most 2 log p time units on G. %;
may need to answer as many as go + ¢p + qg such requests,
so its overall running time is ¢ < t+ 2(log p)(qo +gp + qmu).

|

Pr <e.

447

2) Incontestability of Dealer: Similarly to the above defi-
nition, we also define the incontestability of dealer as follows:

Definition 4: A signature scheme is (t,qo0,qp, qu, €)-secure a-
gainst the incontestability of dealer if any adversary <#> breaks our
scheme with a negligible probability e, the advantage

Verify(mpk,pkivpkd7 W’ Ti*7 U;k) =1:
Setup(1™) = mpk;

K en(mpk,u;)=(sk;,pk

{ski,pki} < ¢9720 eyGen(ui)=(ski,p ’),
DKeyGen(mpk,dealer;)=(sky,pk,

{ k } Y n(v e]) (S d>P d)

1% b
otz ({ski, pki}, {pka}, W) = (I7, 07)

WitGen(mpk, skq) = W,
for t time, qo and qp times queries for dealer and owner, and qu
times queries for the hash Oracle.

Advgg2 =Pr

Compared with Definition 2, it is easy to find a difference
that the adversary <% holds some owner’s secret keys sk;. This
means that any owner cannot forge the signature of dealer. The
incontestability of dealer of our proposed scheme is based on
extended Computational Bilinear Diffie-Hellman 2(eCBDHs)
assumption, which is defined as follow:

Definition 5: (extended-CBDH, Assumption) Given
G,H,G* G, H*® € G for unknown a,b € 7%, the eCBDH,
assumption states that it is computationally intractable to
compute the value of G.

Based on this assumption, we prove our scheme is incon-
testability of dealer, as follows:

Theorem 2: Let G be a (t',€') group for Hiffie-Hellman of
order p. Then the signature scheme on G is (t,q0, 9D, qH, €)-
secure against the unforgeability of dealer, where

t <t —2(logp)(qo +qp +qu), €>¢

Proof: Suppose there exists an PPT adversary o7, that
outputs a forged signature for the above scheme with a non-
negligible advantage e. We can use the algorithm <% to
construct a PPT algorithm %, that can break the CBDH>

problem: for z,y € Zj, given G,H,G*,GY,H" € G,

compute G*Y € G. Algorithm A is described as follows:

e Setup: Given an eCBDH; problem (G, H,G*,GY, H*Y €
G), the algorithm %5 runs the Setup to generate the msk,
and calculates mpk = (9 = G,h = H).

o Learning: o/ can issue up to qo owner-key queries and
qp dealer-key queries. In response, %, runs as follows:

— Owner-key queries. Given an owner’s index i, %y runs
the OKeyGen to generate (sk; = x;,pk; = H"™) for
any a x;, and sends (sk;, pk;) to <.

— Dealer-key queries. Given an dealer’s index j, %> choos-
es a random number (; € Z;. Assuming that skq = y(;,
the public key is computed as pkq = (GY)%. 9B, sends
pkq to oly.

o Hash Query: o can query a Hash Oracle up to gy times
as H(T;) = GMT), where there is a map: {0,1}* — Zy
and h(T;) € Z,.

o Challenges: Assuming that a = x, %> computes wit; =
g® = G® wity = h* = H*. Let W = (wity, wity) and
sends W to % as a challenge.

<e

)

o Response: The adversary .@% calculates a message-signature
pair (T, oF) in a polynomial time, and then sends it to %s.
Output: %5 checks whether it is a valid pair by examining

6(0’;7 h’) ; e(pk;{(IDT)/CJ 7sz) . e(H(];*), U)Ztg)

This equation used to check the validity of forged signature
holds as:

e(pky "7 phy) - e(H(T7), wits)
e((GY)SHUDD/G iy . o(GMTD) | H™Y)
= e(GyH(IDi*)l‘i+h(Ti*)l‘y’ H)

If of is a valid signature, % computes G*Y =

(oF /(GYYHUIDDz)L/MT) which means the PPT algo-

rithm %5 can solve the eCBDH, problem with a non-

negligible probability. This contradicts the hypothesis that

the eCBDH; problem is hard for any PPT algorithm.

That is, the advantage of any probabilistic polynomial time
algorithm %5 in solving the the eCBDH;, is negligibly small.

Advig PP = Pr(%, (G, H,G",GY, H™Y) = G
Verify(mpk, pki, pka, W, T} ,07) = 1:
%2({Skiapki}7 {pkd}’ W) = (T:, O'z*)
The algorithm Z5’s running time is similar to the above

analysis in unforgeability by owner and its overall running
time is same to ¢’ < ¢+ 2(logp)(qo + gp + qu)- [|

Pr <e.

IV. PERFORMANCE EVALUATION
A. Performance Analysis

Our interactive signature scheme is constructed on bilinear
map system from elliptic curve pairings. For simplification,
we give several notations to denote the time for various
operations in our signature scheme. E(G) is used to de-
note the exponentiation in G and B to denote the pairing
e: G x G — Gp. We neglect the operations on Z?, the hash
function H : {0,1}* — G and the multiplication in G and G,
since they are much efficient than exponentiation and pairing
operation. We analyze the computation and communication
complexity for each phase, where Iz-, g denote the length of
elements in Z; and G respectively.

TABLE I
COMPLEXITY ANALYSIS OF OUR SCHEME

‘ Computation Complexity

OKeyGen 1-E(G)

DKeyGen 1-E(G)

WitGen 3-E(G)

SigGen Dealer: 2 - E(G) | Owner: 4 - E(G)
Verify 1-E(G)+3-B

In Tables I and II, we analyze the performance of our
interactive signature scheme from two aspects: computation
and communication/storage costs. Note that in Table I, there
is no exponentiation and pairing operations in the setup phase,
we thus do not list this algorithm here. In Table II, we use sk
to denote sk; and sk, since both of them has the same element
length. Similarly, we use pk to denote pk; and pk,.

448

TABLE 11
COMMUNICATION/STORAGE ANALYSIS OF OUR SCHEME

‘ Communication/Storage Complexity

Master public key (msk) 2-lg
Private key (sk) 1- lZ;
Public key (pk) 1-lg

Witness (W) 2-lg
Signature (o) 1-lg

B. Performance Evaluation

We report experimental results to demonstrate the perfor-
mance of the interactive signature scheme. We build a simple
demo program simulating the interactive process between two
participants. This demo is implemented in Java and built
upon the Java Pairing Based Cryptography Library (JPBC)
cryptographic library. In table III the detail data are listed for
the above experiments. We use type A elliptic curve parameter
to generate bilinear pairing. In type A pairing, let [, be the
length of some prime ¢, . be the length of the order r,
where r is some prime factor of ¢ + 1. We imply five elliptic
curves parameters in the experiments, in which each of I, 1,
has different value: a_160 (1,=512, [,=160), a_200 (I,=640,
1 »=200), a_240 (I,=768, 1,=240), a_280 (1,=896, [,=280) and
a_320 (1,=1024, 1,=320).

TABLE III

COMPUTATIONAL COSTS FOR DIFFERENT ELLIPTIC CURVE TYPE
Type | Setup OKeyGen WitGen SigGen Verify

a_160 | 0.01324 0.02538 0.07569 0.15141 0.11066
a_200 | 0.02335 0.04598 0.13500 0.27503 0.20850
a_240 | 0.03725 0.07072 0.28572 047010 0.32450
a_280 | 0.06605 0.10510 0.32277 0.64518 0.48799
a_320 | 0.07756 0.14998 0.44662 091350 0.71197

V. CONCLUSION
In this paper, we present a new system model in blockchain
for implementing “Instant Confirmation with Incontestability”.
As the core of our system, a signature scheme IIS is proposed
and implemented to ensure transactions get dealer’s confirma-
tion incontestability. We integrate our scheme into blockchain,
analyze the security of it and evaluate its performance.

ACKNOWLEDGMENT

This work is supported by the National 973 Program (Grand
No. 2013CB329601) and the National Natural Science Foun-
dation of China (Grant No. 61472032).

REFERENCES
1

2

—

Spencer Bogart and Kerry Rice. The blockchain report: Welcome to the
internet of value, 2015.

Ghassan O Karame, Elli Androulaki, and Srdjan Capkun. Double-
spending fast payments in bitcoin. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 906-917.
ACM, 2012.

Kaylash Chaudhary, Ansgar Fehnker, Jaco van de Pol, and Mariélle
Stoelinga. Modeling and verification of the bitcoin protocol. In
Proceedings Workshop on Models for Formal Analysis of Real Systems,
MARS 2015, Suva, Fiji, November 23, 2015., pages 46-60, 2015.

Ittay Eyal, Adem Efe Gencer, Emin Giin Sirer, and Robbert van Renesse.
Bitcoin-ng: A scalable blockchain protocol. CoRR, abs/1510.02037, 2015.
Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. In Advances in Cryptology — ASIACRYPT 2001, pages 514—
532. Springer, 2001.

—

3

—

[4

=

[5]

