
Design Patterns for Smart Contracts in the
Ethereum Ecosystem

Maximilian Wöhrer and Uwe Zdun
University of Vienna

Faculty of Computer Science

Währingerstraße 29, 1090 Vienna, Austria

Email: {maximilian.woehrer,uwe.zdun}@univie.ac.at

Abstract—The idea to digitally facilitate contract law and
business practices through computer programs has led to the
notion of smart contracts. Today’s most prominent smart contract
ecosystem is Ethereum, a blockchain based distributed computing
platform. Due to the inherent nature of blockchain based contract
execution, missing low level programming abstractions, and the
constant evolution of platform features and security considera-
tions, writing correct and secure smart contracts for Ethereum is
a difficult task. Based on a Multivocal Literature Research and
an analysis of the gathered data based on qualitative research
methods, we mined a number of design patterns providing design
guidelines. We describe those patterns in detail and provide
exemplary code for better illustration. Our research shows that
the patterns are widely used to address application requirements
and common problems. We expect generalizability of some or
all of the patterns for other smart contract ecosystems, but this
is outside of the scope of this study, which studied only smart
contract patterns in Ethereum.

I. INTRODUCTION

Bitcoin, which is the most popular cryptocurrency, records

transactions in a decentralized data structure called blockchain

and supports the feature to encode rules or simple scripts

for processing transactions. This feature has evolved to the

concept of smart contracts, self-executing computer programs

that run on a blockchain to stipulate and enforce the nego-

tiation and execution of (legal) contracts. The blockchain, or

more precisely its decentralized nature, assures that contract

initiated transactions are autonomously and truthfully exe-

cuted. Today’s most prominent smart contract ecosystem is

Ethereum, a blockchain based distributed computing platform,

allowing anyone to write smart contracts with arbitrary rules

in the platform’s leading language Solidity. Despite the in-

creasing popularity of smart contracts, their implementation

involves a number of problems. First, rather unconventional

programming paradigms are required, because of the inherent

characteristics of blockchain-based program execution. For

example, programmers have to consider the lack of execu-

tion control and the immutable character of smart contracts

once they are deployed. Second, due to missing low-level

programming abstractions the developer is responsible for the

internal organization and manipulation of data at a deeper

level. Third, the rapid transformation of platform features

and security considerations requires continuous awareness of

platform capabilities and potential security risks. Furthermore,

smart contracts handle considerable financial values, therefore

it is crucial that their implementation is correct and secure

against attacks. Given these points, it is beneficial to have a

solid foundation of established design and coding guidelines

that promote the creation of correct and secure smart contracts,

for example in the form of design patterns. Design patterns

[1, 2] are a commonly used technique to encode design guide-

lines or best practices. They express an abstract or conceptual

solution to a concrete, complex, and reoccurring problem. So

far, design patterns have not received a lot of attention in

Ethereum research and information on Solidity design and

coding guidelines is scattered among different sources. In

previous work [3] we have gathered security related design

patterns. In this work, we focus on general design patterns for

smart contracts in Ethereum. Our research aims to answer the

following two research questions (RQs):

RQ1 Which design patterns commonly appear in the

Ethereum ecosystem?

RQ2 How do these design patterns map to Solidity coding

practices?

In order to answer these questions, we followed the Multi-

vocal Literature Research method by Garousi et al. [4] to

incorporate practitioners’ experience and applied an analysis

of the gathered data based on qualitative research methods

(namely Grounded Theory [5] techniques to synthesize the

patterns). Our research identified several patterns that pinpoint

common issues during the implementation of smart contracts

and provide guidance to resolve them.

The paper is organised in the following way: First, we

discuss the research study design in Section II, before we

present design patterns for Solidity in Section III, and discuss

our findings in Section IV. Finally, we present related work

in Section V, and draw a conclusion in Section VI.

II. RESEARCH STUDY DESIGN

Due to a lack of academic literature regarding design

patterns for Ethereum and Solidity we decided to carry out

a Multivocal Literature Review (MLR). A MLR is a form of

Systematic Literature Review (SLR) which includes “grey”

literature (e.g., blogs, videos, and web pages) in addition

to published “white” literature (e.g., academic journals, and

conference papers) [6]. Figure 1 depicts the general process

of our conducted MLR incorporating guidelines elaborated

by Garousi et al. [6]. Starting from our research questions

1513

2018 IEEE Confs on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing,
Smart Data, Blockchain, Computer and Information Technology, Congress on Cybermatics

978-1-5386-7975-3/18/$31.00 ©2018 IEEE
DOI 10.1109/Cybermatics_2018.2018.00255

Iinitial Search

White
Literature

Google Scholar, IEEE,

Springer, ACM

Books, Papers Grey
Literature

Google Search

Blogs, Forums, Talks, GitHub

Search Keywords Study RQs

Pool of
Sources

Snowballing Selection
Pool

Source
Selection Final Pool

Data ExtractionExtacted DataData Synthesis

GT Techniques

MLR Results

Iterative Keyword Refinement

Fig. 1. An overview of the conducted Multivocal Literature Review (MLR)
process.

we defined initial search keywords as “ethereum”, “solidity”,

“(smart) contract”, and “(software/design) pattern”. These

keyword combinations were then used to query different data

sources for “white” and “grey” literature. The results were

examined, i.e., citations and links were followed and reference

lists were studied during a process called snowballing [7].

At the same time, initial search keywords were iteratively

extended until theoretical saturation was reached. Next, the

subsequent pool of sources was filtered according to prede-

fined inclusion and exclusion criteria which encompassed to

accept sources of any type that relate to Ethereum design

patterns and exclude non-English works or works that seem

unbalanced in presentation. Further, as Ethereum and Solidity

have significantly evolved in recent years, we prioritized recent

works. The accumulated final source pool contained among

others the following important major sources. First, academic

literature related to Ethereum and Solidity patterns [8, 9, 10].

Second, the official Solidity development documentation [11]

and smart contract best practices [12]. Third, Internet blogs

and discussion forums about Ethereum, such as the Ethereum

community on reddit [13], and the Ethereum QA section on

stackexchange [14]. Forth, Ethereum conference talks [15, 16].

Fifth, existing GitHub repositories related to smart contract

coding patterns in Solidity [17, 18, 19]. As next step the final

source pool was reviewed and the extracted relevant informa-

tion was analysed with Grounded Theory (GT) techniques,

following recommendations by Stol et al. [5]. In general,

we took an iterative and pragmatic approach and recorded

the concepts of our observations and insights in theoretical

memos. These memos represented the actual pattern synthesis

process and happened in several iterative stages, in which the

patterns were constantly compared, revised, and contrasted

until all the gathered information was accounted for.

III. SMART CONTRACT DESIGN PATTERNS

In this section we give an overview of design patterns that

are notably frequent or practical for smart contract design

and coding. The patterns are divided according to operational

scope into five categories: Action and Control (III-A), Autho-

rization (III-B), Lifecycle (III-C), Maintenance (III-D), and

Security [3]. An overview of the categories and assigned

patterns is given in Table I, which also lists an example

contract with published source code for each pattern on the

Ethereum mainnet. The illustrative source code examples for

the patterns in this section are available on GitHub [20].

TABLE I
PATTERN OVERVIEW INCLUDING EXAMPLE CONTRACTS WITH PUBLISHED

SOURCE CODE ON THE ETHEREUM MAINNET.

Category Pattern Example Contract

Action and Control

Pull Payment Cryptopunks

State Machine DutchAuction

Commit and Reveal ENS Registrar

Oracle (Data Provider) Etheroll

Authorization
Ownership Ethereum Lottery

Accesss Restriction Etheroll

Lifecycle
Mortal GTA Token

Automatic Deprecation Polkadot

Maintenance

Data Segregation SAN Token

Satellite LATP Token

Contract Register Tether Token

Contract Relay Numeraire

Security[3]

Checks-Effects-Interaction CryptoKitties

Emergency Stop Augur/REP

Speed Bump TheDAO

Rate Limit etherep

Mutex Ventana Token

Balance Limit CATToken

A. Action and Control Patterns

Action and Control is a group of patterns that provide

mechanisms for typical operational tasks.

1) Pull Payment:

PULL PAYMENT PATTERN
Problem When a contract sends funds to another party, the send operation
can fail.

Solution Let the receiver of a payment withdraw the funds.

A common task when coding smart contracts is to transfer

funds. Unfortunately, there are several circumstances under

which a transfer can fail. This is due to the fact that the

implementation to send funds involves an external call, which

basically hands over control to the called contract. Therefore,

security considerations regarding external calls and re-entrancy

attacks have to be considered. A re-entrancy attack describes

the scenario where the called contract calls back the current

contract, before the first invocation of the function containing

the call, was finished. This can lead to an unwanted execution

behaviour of functions.

Currently, there are three different methods to transfer

funds in Solidity. These are address.send(), address.

transfer(), and address.call.value()(). If the pay-

ment recipient is a contract, calling theses methods triggers

the execution of a so-called fallback function in the receiver

1514

contract. Per definition, the fallback function is a name-

and parameterless function, that is called when the function

signature does not match any of the available functions in

a Solidity contract. Since send() specifies a blank function

signature, it will always trigger the fallback function if it exists.

x.transfer(y) is equivalent to require(x.send(y)) and

defines a maximum stipend of 2,300 gas, given to the receiver

contract for execution, which is currently only enough to log

an event. address.call.value()() gives all available gas

to the receiving contract for execution, which makes this type

of value transfer unsafe against re-entrancy. So, the difference

between send() and address.call.value()() is how

much gas is made available to the fallback function in the

receiving contract, thereby controlling the risk.

Due to the possibility of deliberately sabotaging the transfer

of funds by executing expensive operations in the fallback

method, causing an “out of gas” (OOG) error, or manipulations

involving re-entrancy attacks, a more favourable approach is

to reverse the payment process (let users withdraw their funds

themselves). Listing 1 shows a problematic reliance on a

successful transfer of funds, whereas Listing 2 mitigates this

problem by isolating the external call into its own transaction

that can be initiated by the recipient of the call.

pragma solidity ˆ0.4.17;
contract Auction {
address public highestBidder;
uint highestBid;

function bid() public payable {
require(msg.value >= highestBid);
if (highestBidder != 0) {
// if call fails causing a rollback,
// no one else can bid
highestBidder.transfer(highestBid);

}
highestBidder = msg.sender;
highestBid = msg.value;

}
}

Listing 1. An intuitive solution in an auction contract would be to push a
payment to a defeated bidder once a higher bid has been received.

pragma solidity ˆ0.4.17;
contract Auction {
address public highestBidder;
uint highestBid;
mapping(address => uint) refunds;

function bid() public payable {
require(msg.value >= highestBid);
if (highestBidder != 0) {
// record the underlying bid to be refund
refunds[highestBidder] += highestBid;

}
highestBidder = msg.sender;
highestBid = msg.value;

}

function withdrawRefund() public {
uint refund = refunds[msg.sender];
refunds[msg.sender] = 0;
msg.sender.transfer(refund);

}
}

Listing 2. Introducing a refunds mapping, which stores the claimable defeated
bids, to be withdrawn by participants in a pull payment process.

2) State Machine:
STATE MACHINE PATTERN
Problem An application scenario implicates different behavioural stages
and transitions.

Solution Apply a state machine to model and represent different be-
havioural contract stages and their transitions.

A state machine models the behaviour of a system based

on its history and current inputs. Developers use this con-

struct to break complex problems into simple states and state

transitions. These are then used to represent and control the

execution flow of a program. State machines can also be

applied in smart contracts, exemplified in Listing 3. Many

usage scenarios require a contract to have different behavioural

stages, in which different functions can be called. When

interacting with such a contract, a function call might end the

current stage and initiate a change into a consecutive stage.

pragma solidity ˆ0.4.17;
contract DepositLock {
enum Stages {
AcceptingDeposits,
FreezingDeposits,
ReleasingDeposits

}
Stages public stage = Stages.AcceptingDeposits;
uint public creationTime = now;
mapping (address => uint) balances;

modifier atStage(Stages _stage) {
require(stage == _stage);
_;

}

modifier timedTransitions() {
if (stage == Stages.AcceptingDeposits && now >=

creationTime + 1 days)
nextStage();

if (stage == Stages.FreezingDeposits && now >=
creationTime + 8 days)

nextStage();
_;

}

function nextStage() internal {
stage = Stages(uint(stage) + 1);

}

function deposit() public payable timedTransitions
atStage(Stages.AcceptingDeposits) {

balances[msg.sender] += msg.value;
}

function withdraw() public timedTransitions atStage(
Stages.ReleasingDeposits) {

uint amount = balances[msg.sender];
balances[msg.sender] = 0;
msg.sender.transfer(amount);

}
}

Listing 3. A contract based on a state machine to represent a deposit lock,
which accepts deposits for a period of one day and releases them after seven
days.

3) Commit and Reveal:
COMMIT AND REVEAL PATTERN
Problem All data and every transaction is publicly visible on the
blockchain, but an application scenario requires that contract interactions,
specifically submitted parameter values, are treated confidentially.

Solution Apply a commitment scheme to ensure that a value submission
is binding and concealed until a consolidation phase runs out, after which
the value is revealed, and it is publicly verifiable that the value remained
unchanged.

1515

A characteristic of blockchains is, that it is not possible

to restrict anyone from reading contents of a transaction

or transaction’s state. This transparency leads to problems,

especially when contract participants compete with each other.

pragma solidity ˆ0.4.17;
contract CommitReveal {
struct Commit {string choice; string secret; string

status;}
mapping(address => mapping(bytes32 => Commit)) public

userCommits;

event LogCommit(bytes32, address);
event LogReveal(bytes32, address, string, string);

function CommitReveal() public {}

function commit(bytes32 _commit) public returns (bool
success) {

var userCommit = userCommits[msg.sender][_commit];
if(bytes(userCommit.status).length != 0) {
return false; // commit has been used before

}
userCommit.status = "c"; // comitted
LogCommit(_commit, msg.sender);
return true;

}

function reveal(string _choice, string _secret, bytes32
_commit) public returns (bool success) {

var userCommit = userCommits[msg.sender][_commit];
bytes memory bytesStatus = bytes(userCommit.status);
if(bytesStatus.length == 0) {
return false; // choice not committed before

} else if (bytesStatus[0] == "r") {
return false; // choice already revealed

}
if (_commit != keccak256(_choice, _secret)) {
return false; // hash does not match commit

}
userCommit.choice = _choice;
userCommit.secret = _secret;
userCommit.status = "r"; // revealed
LogReveal(_commit, msg.sender, _choice, _secret);
return true;

}

function traceCommit(address _address, bytes32 _commit)
public view returns (string choice, string secret,
string status) {

var userCommit = userCommits[_address][_commit];
require(bytes(userCommit.status)[0] == "r");
return (userCommit.choice, userCommit.secret,

userCommit.status);
}

}

Listing 4. A contract that allows a party to commit to a choice and reveal it
at a later point in time, traceable for anyone.

4) Oracle (Data Provider):
ORACLE (DATA PROVIDER) PATTERN
Problem An application scenario requires knowledge contained outside
the blockchain, but Ethereum contracts cannot directly acquire information
from the outside world. On the contrary, they rely on the outside world
pushing information into the network.

Solution Request external data through an oracle service that is connected
to the outside world and acts as a data carrier.

Ethereum contracts run within their own ecosystem, where

they communicate with each other, but external data can only

enter the system through outside interaction via a transaction

(by passing data to a method). This is a drawback, because

many contract use cases depend on external knowledge outside

the blockchain (e.g. price feeds). A solution to this prob-

lem is to utilize oracles with a connection to the outside

world. The oracle service acts as a data carrier, where the

interaction between an oracle service and a smart contract

is asynchronous. First, a transaction invokes a function of a

smart contract that contains an instruction to send a request

to an oracle. Then, according to the parameters of such

a request, the oracle will fetch a result and return it by

executing a callback function placed in the primary contract.

The described procedure involving an oracle contract and

its consumer contract is illustrated by Listing 5 and Listing

6. A shortcoming of this solution is that oracles contradict

the blockchain theorem of a decentralized network, because

contracts utilizing an oracle rely on a single party or group to

be honest. Currently operating oracle services [21, 22] address

this shortcoming by accompanying the resulting data with a

proof of authenticity. It should be noted, that an oracle has to

pay for the callback invocation, thus an oracle usually requires

payment of an oracle fee, plus Ether necessary for the callback.

pragma solidity ˆ0.4.17;
contract Oracle {
address knownSource = 0x123...; // known source
struct Request {
bytes data;
function(bytes memory) external callback;

}
Request[] requests;

event NewRequest(uint);

modifier onlyBy(address account) {
require(msg.sender == account); _;

}

function query(bytes data, function(bytes memory)
external callback) public {

requests.push(Request(data, callback));
NewRequest(requests.length - 1);

}

// invoked by outside world
function reply(uint requestID, bytes response) public

onlyBy(knownSource) {
requests[requestID].callback(response);

}
}

Listing 5. An oracle contract that allows to request data from outside the
blockchain.

pragma solidity ˆ0.4.17;
import "./Oracle.sol";
contract OracleConsumer {
Oracle oracle = Oracle(0x123...); // known contract

modifier onlyBy(address account) {
require(msg.sender == account); _;

}

function updateExchangeRate() {
oracle.query("USD", this.oracleResponse);

}

function oracleResponse(bytes response) onlyBy(oracle) {
// use the data

}
}

Listing 6. An oracle consumer contract implementing a callback method to
receive result data.

B. Authorization Patterns
Authorization is a group of patterns that control access to

smart contract functions and provide basic authorization con-

trol, which simplify the implementation of “user permissions”.

1516

1) Ownership:

OWNERSHIP PATTERN
Problem By default any party can call a contract method, but it must
be ensured that sensitive contract methods can only be executed by the
owner of a contract.

Solution Store the contract creator’s address as owner of a contract and
restrict method execution dependent on the callers address.

It is very common that only the owner of a contract should

be eligible to call functions, which are sensitive and crucial

for the correct operation of the contract. This pattern limits

access to certain functions to only the owner of the contract,

an example is shown in Listing 7. A typical application of this

pattern is demonstrated in the Mortal pattern.

pragma solidity ˆ0.4.17;
contract Owned {
address public owner;

event LogOwnershipTransferred(address indexed
previousOwner, address indexed newOwner);

modifier onlyOwner() {
require(msg.sender == owner);
_;

}

function Owned() public {
owner = msg.sender;

}

function transferOwnership(address newOwner) public
onlyOwner {

require(newOwner != address(0));
LogOwnershipTransferred(owner, newOwner);
owner = newOwner;

}
}

Listing 7. A simple contract to track the ownership of a contract.

2) Access Restriction:

ACCESS RESTRICTION PATTERN
Problem By default a contract method is executed without any precon-
ditions being checked, but it is desired that the execution is only allowed
if certain requirements are met.

Solution Define generally applicable modifiers that check the desired
requirements and apply these modifiers in the function definition.

Since there is no built in mechanism to control execution

privileges, a common pattern is to restrict function execution.

It is often required that functions should only be executed

based on the presence of certain prerequisites. These can refer

to different categories, such as temporal conditions, caller and

transaction info, or other requirements that need to be checked

prior a function execution. Listing 8 illustrates how different

prerequisites can be checked prior function execution.

pragma solidity ˆ0.4.17;
import "./Ownership.sol";
contract AccessRestriction is Owned {
uint public creationTime = now;

modifier onlyBefore(uint _time) {
require(now < _time); _;

}

modifier onlyAfter(uint _time) {
require(now > _time); _;

}

modifier onlyBy(address account) {

require(msg.sender == account); _;
}

modifier condition(bool _condition) {
require(_condition); _;

}

modifier minAmount(uint _amount) {
require(msg.value >= _amount); _;

}

function f() payable onlyAfter(creationTime + 1 minutes)
onlyBy(owner) minAmount(2 ether) condition(msg.
sender.balance >= 50 ether) {

// some code
}

}

Listing 8. A contract demonstrating how to check certain requirements prior
to function execution.

C. Lifecycle Patterns

Lifecycle is a group of patterns that control the creation and

destruction of smart contracts.
1) Mortal:

MORTAL PATTERN
Problem A deployed contract will exist as long as the Ethereum network
exists. If a contract’s lifetime is over, it must be possible to destroy a
contract and stop it from operating.

Solution Use a selfdestruct call within a method that does a preliminary
authorization check of the invoking party.

A contract is defined by its creator, but the execution,

and subsequently the services it offers are provided by the

Ethereum network itself. Thus, a contract will exist and be

executable as long as the whole network exists, and will only

disappear if it was programmed to self destruct. Mortal is a

pattern that enables the creator of a contract to destroy it.

The pattern uses a modifier to ensure that only the owner

of the contract can execute the selfdestruct operation,

which sends the remaining Ether stored within the contract to

a designated target address (provided as argument) and then

the storage and code is cleared from the current state. Listing

9 exemplifies the application of this pattern.

pragma solidity ˆ0.4.17;
import "../authorization/Ownership.sol";
contract Mortal is Owned {
function destroy() public onlyOwner {
selfdestruct(owner);

}

function destroyAndSend(address recipient) public
onlyOwner {

selfdestruct(recipient);
}

}

Listing 9. A contract that provides its creator with the ability to destroy it.

2) Automatic Deprecation:
AUTOMATIC DEPRECATION PATTERN
Problem A usage scenario requires a temporal constraint defining a point
in time when functions become deprecated.

Solution Define an expiration time and apply modifiers in function
definitions to disable function execution if the expiration date has been
reached.

Automatic deprecation is a pattern that allows to automati-

cally prohibit the execution of functions after a specific time

1517

period has elapsed. Listing 10 shows the automatic deprecation

of functions based on an elapsed time period.

pragma solidity ˆ0.4.17;
contract AutoDeprecate {
uint expires;

function AutoDeprecate(uint _days) public {
expires = now + _days * 1 days;

}

function expired() internal view returns (bool) {
return now > expires;

}

modifier willDeprecate() {
require(!expired());
_;

}

modifier whenDeprecated() {
require(expired());
_;

}

function deposit() public payable willDeprecate {
// some code

}

function withdraw() public view whenDeprecated {
// some code

}
}

Listing 10. A contract interface that automatically deprecates after a specified
time period has elapsed.

D. Maintenance Patterns

Maintenance is a group of patterns that provide mechanisms

for live operating contracts. In contrast to ordinary distributed

applications, which can be updated when bugs are detected,

smart contracts are irreversible and immutable. This means

that there is no way to update a smart contract, other than

writing an improved version that is then deployed as new

contract.

1) Data Segregation:

DATA SEGREGATION PATTERN
Problem Contract data and its logic are usually kept in the same contract,
leading to a closely entangled coupling. Once a contract is replaced by
a newer version, the former contract data must be migrated to the new
contract version.

Solution Decouple the data from the operational logic into separate
contracts.

The data segregation pattern separates contract logic from

its underlying data. Segregation promotes the separation of

concerns and mimics a layered design (e.g. logic layer, data

layer). Following this principle avoids costly data migrations

when code functionality changes. Meaning a new contract

version would not have to recreate all of the existing data

contained in the previous contract. The separation of contract

data and contract logic is shown in Listing 11 and Listing 12.

It is favourable to design the storage contract very generic so

that once it is created, it can store and access different types

of data with the help of setter and getter methods.

pragma solidity ˆ0.4.17;
contract DataStorage {
mapping(bytes32 => uint) uintStorage;

function getUintValue(bytes32 key) public constant
returns (uint) {

return uintStorage[key];
}

function setUintValue(bytes32 key, uint value) public {
uintStorage[key] = value;

}
}

Listing 11. The data is separated in its own contract.

pragma solidity ˆ0.4.17;
import "./DataStorage.sol";
contract Logic {
DataStorage dataStorage;

function Logic(address _address) public {
dataStorage = DataStorage(_address);

}

function f() public {
bytes32 key = keccak256("emergency");
dataStorage.setUintValue(key, 911);
dataStorage.getUintValue(key);

}
}

Listing 12. The contract logic can manipulate the data through a reference.

2) Satellite:

SATELLITE PATTERN
Problem Contracts are immutable. Changing contract functionality re-
quires the deployment of a new contract.

Solution Outsource functional units that are likely to change into separate
so-called satellite contracts and use a reference to these contracts in order
to utilize needed functionality.

The satellite pattern allows to modify and replace contract

functionality. This is achieved through the creation of separate

satellite contracts that encapsulate certain contract functional-

ity. The addresses of these satellite contracts are stored in a

base contract. This contract can then can call out to the satellite

contracts when it needs to reference certain functionalities, by

using the stored address pointers. If this pattern is properly

implemented, modifying functionality is as simple as creating

new satellite contracts and changing the corresponding satellite

addresses. Listing 13 and 14 exemplify the application of this

pattern.

pragma solidity ˆ0.4.17;
contract Satellite {
function calculateVariable() public pure returns (uint){
// calculate var
return 2 * 3;

}
}

Listing 13. A satellite contract encapsulates certain contract functionalities.

pragma solidity ˆ0.4.17;
import "../../authorization/Ownership.sol";
import "./Satellite.sol";
contract Base is Owned {
uint public variable;
address satelliteAddress;

function setVariable() public onlyOwner {
Satellite s = Satellite(satelliteAddress);
variable = s.calculateVariable();

}

function updateSatelliteAddress(address _address) public
onlyOwner {

1518

satelliteAddress = _address;
}

}

Listing 14. A base contract referring to a satellite contract in order to
fulfil its purpose. The use of a satellite allows an easy contract functionality
modification.

3) Contract Register:

CONTRACT REGISTER PATTERN
Problem Contract participants must be referred to the latest contract
version.

Solution Let contract participants pro-actively query the latest contract
address through a register contract that returns the address of the most
recent version.

The register pattern is an approach to handle the update

process of a contract. The pattern keeps track of different

versions (addresses) of a contract and points on request to

the latest one, as seen in Listing 15. In conclusion, before

interacting with a contract, a user would always have to query

the register for the contract’s latest address. When following

this update approach, it is also important to determine how to

handle existing contract data, when an old contract version is

replaced. An alternative solution to point to the latest contract

address would be to utilize the Ethereum Name Service (ENS).

It is a register that enables a secure and decentralised way

to resolve human-readable names, like ’mycontract.eth’, into

machine-readable identifiers, including Ethereum addresses.

pragma solidity ˆ0.4.17;
import "../authorization/Ownership.sol";
contract Register is Owned {
address backendContract;
address[] previousBackends;

function Register() public {
owner = msg.sender;

}

function changeBackend(address newBackend) public
onlyOwner() returns (bool) {

if(newBackend != backendContract) {
previousBackends.push(backendContract);
backendContract = newBackend;
return true;

}
return false;

}
}

Listing 15. A register contract to store the latest version of a contract.

4) Contract Relay:

CONTRACT RELAY PATTERN
Problem Contract participants must be referred to the latest contract
version.

Solution Contract participants always interact with the same proxy
contract that relays all requests to the most recent contract version.

A relay is another approach to handle the update process

of a contract. The relay pattern provides a method to update

a contract to a newer version while keeping the old contract

address. This is achieved by using a kind of proxy contract that

forwards calls and data to the latest version of the contract,

shown in Listing 16. This approach can forward function calls

including their arguments, but cannot return result values.

Another drawback of this approach is that the data storage

layout needs to be consistent in newer contract versions,

otherwise data may be corrupted.

pragma solidity ˆ0.4.17;
import "../authorization/Ownership.sol";
contract Relay is Owned {
address public currentVersion;

function Relay(address initAddr) public {
currentVersion = initAddr;
owner = msg.sender;

}

function changeContract(address newVersion) public
onlyOwner() {

currentVersion = newVersion;
}

// fallback function
function() public {
require(currentVersion.delegatecall(msg.data));

}
}

Listing 16. A relay contract to forward data and calls.

IV. DISCUSSION

Combined with our previous work [3] our research covers

18 patterns grouped into five categories. An examination of

the patterns reveals a hierarchy structure, meaning some of the

patterns act as foundation for others. For example, the Access

Restriction pattern, is directly applied by other patterns, like

the Mortal pattern. Further, although some patterns are very

basic, their real practical value is unfolded when patterns are

combined. For example, the Ownership pattern is often used as

a prerequisite in combination with other patterns. A principle

shared by several patterns is related to the problem of contract

immutability, which is circumvented by using updatable object

references. All Maintenance Patterns use this principle to

decouple contract functionality, data, or even whole contracts

through a proxy object. As to the generalizability of the

patterns, it might be assumed that other platforms face similar

issues as Ethereum. In the real world, once a contract is

changed, it needs to be revalidated by all involved parties.

This concept is also encountered in Ethereum, where contracts

are immutable and any change requires the creation of a new

contract. Although real world contracts are conclusive and

final through their written terms, their code implementations

underlie inherent software concepts involving evolutionary

code changes and bug fixes. This creates a divergence between

contract immutability (a final version of a written agreement

manifested in code) and the ability to modify that code (due

to bugs or a necessary code updates). That is, the separation

of code changes that modify contract terms and those that are

necessary due to evolutionary adaptations is important. Alto-

gether, because any software based smart contract ecosystem

and its contained contracts require code updates, it can be

assumed that maintenance patterns are generally applicable to

other ecosystems as well.

V. RELATED WORK

According to Alharby and van Moorsel [23] current research

on smart contracts is focused on identifying and tackling smart

1519

contract issues and can be divided into four categories, namely

coding, security, privacy and performance issues. Unfortu-

nately, a lot of research and practical knowledge is scattered

throughout grey literature. Only few papers mention software

patterns in blockchain technology. A work with general scope

on blockchain software development written by Xu et al.

[24] proposes a taxonomy of blockchain-based systems on

architecture design. Another work by Bartoletti and Pompianu

[8] conducted an empirical analysis of Solidity contracts and

identified a list of nine common design patterns. Yet another

paper by Zhang et al. [9] describes how the application of

familiar software patterns can help to resolve design specific

challenges. Finally, a paper by Mavridou and Laszka [10]

describes a framework for designing contracts as Finite State

Machines utilising design patterns for code generation. In

general, the above mentioned papers have commonalities with

this work. Some findings and principles intersect with the

patterns in this paper, but none of these publications focus

on a dedicated pattern language to the extent of this work.

VI. CONCLUSION

In this paper we derived Solidity design patterns from white

and grey literature using a Multivocal Literature Review and

qualitative research methods borrowed from Grounded Theory.

While many smart contracts have been written in Solidity for

different purposes, we have identified, grouped, and described

several globally applicable patterns and have discussed com-

mon principles and relationships among them. Each pattern

is explained in a problem and solution based approach, to

illustrate the context and applicability of the pattern. With

our work, we aim to provide a basis for a comprehensive

pattern language, that can be used by developers to tackle

common problems related to smart contract coding. For future

work, the presented design patterns can be used to extract

code building blocks, which could be integrated in automatic

code generating frameworks. Further, the patterns could be

incorporated into a certified set of libraries, covering typical

and commonly occurring coding scenarios. Beyond that, the

collated patterns could be compared to coding practices that

evolve in other smart contract platforms. This could further

reveal more abstract design patterns that are independent from

the underlying implementation framework and are valid for

smart contracts in general.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-oriented Software. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1995.

[2] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, 2nd ed. New York, NY, USA: John Wiley
& Sons, Inc., 2000.

[3] M. Wöhrer and U. Zdun, “Smart contracts: Security patterns
in the ethereum ecosystem and solidity,” in 1st International
Workshop on Blockchain Oriented Software Engineering
@ SANER 2018, March 2018. [Online]. Available: http:
//eprints.cs.univie.ac.at/5433/

[4] V. Garousi, M. Felderer, and M. V. Mäntylä, “The need for
multivocal literature reviews in software engineering: comple-
menting systematic literature reviews with grey literature,” in
Proceedings of the 20th International Conference on Evaluation
and Assessment in Software Engineering. ACM, 2016.

[5] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in
software engineering research: a critical review and guidelines,”
in Software Engineering (ICSE), 2016 IEEE/ACM 38th Inter-
national Conference on. IEEE, 2016, pp. 120–131.

[6] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines
for including the grey literature and conducting multivocal
literature reviews in software engineering,” arXiv preprint
arXiv:1707.02553, 2017.

[7] C. Wohlin, “Guidelines for snowballing in systematic literature
studies and a replication in software engineering,” in
Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering, ser. EASE ’14. New
York, NY, USA: ACM, 2014, pp. 38:1–38:10. [Online].
Available: http://doi.acm.org/10.1145/2601248.2601268

[8] M. Bartoletti and L. Pompianu, “An empirical analysis of smart
contracts: platforms, applications, and design patterns,” arXiv
preprint arXiv:1703.06322, 2017.

[9] P. Zhang, J. White, D. C. Schmidt, and G. Lenz, “Applying
software patterns to address interoperability in blockchain-based
healthcare apps,” arXiv preprint arXiv:1706.03700, 2017.

[10] A. Mavridou and A. Laszka, “Designing secure ethereum smart
contracts: A finite state machine based approach,” arXiv preprint
arXiv:1711.09327, 2017.

[11] Solidity — solidity 0.4.18 documentation. [Online]. Available:
https://media.readthedocs.org/pdf/solidity/develop/solidity.pdf

[12] “Ethereum contract security techniques and tips,” 2017,
[Online; accessed 6-September-2017]. [Online]. Available:
https://github.com/ConsenSys/smart-contract-best-practices

[13] Ethereum development and dapps. [Online]. Available: https:
//www.reddit.com/r/ethdev/

[14] Ethereum stack exchange. [Online]. Available: https://ethereum.
stackexchange.com/

[15] J. Bontje. (2015) Dapp design patterns. [Online]. Available:
https://www.slideshare.net/mids106/dapp-design-patterns

[16] Smart Contracts Are Neither Smart Nor Contracts . . . So
What Are They? [Online]. Available: https://www.infoq.com/
presentations/blockchain-introduction

[17] cjgdev. (2016) Smart-contract patterns written in solidity,
collated for community good. [Online]. Available: https:
//github.com/cjgdev/smart-contract-patterns

[18] OpenZeppelin. Openzeppelin/zeppelin-solidity: Openzeppelin,
a framework to build secure smart contracts
on ethereum. [Online]. Available: https://github.com/
OpenZeppelin/zeppelin-solidity

[19] Modular-Network. Modular-network/ethereum-libraries: Li-
brary contracts for ethereum. [Online]. Available:
https://github.com/Modular-Network/ethereum-libraries

[20] “maxwoe/solidity patterns.” [Online]. Available: https://github.
com/maxwoe/solidity patterns

[21] Oraclize - blockchain oracle service, enabling data-rich smart
contracts. [Online]. Available: http://www.oraclize.it/

[22] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi,
“Town crier: An authenticated data feed for smart contracts,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2016, pp. 270–282.

[23] M. Alharby and A. van Moorsel, “Blockchain-based smart
contracts: A systematic mapping study,” arXiv preprint
arXiv:1710.06372, 2017.

[24] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pau-
tasso, and P. Rimba, “A taxonomy of blockchain-based systems
for architecture design,” in Software Architecture (ICSA), 2017
IEEE International Conference on. IEEE, 2017, pp. 243–252.

1520

