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A Tensor Decomposition-Based Anomaly Detection
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Abstract—Anomalies usually refer to targets with a spot of
pixels (even subpixels) that stand out from their neighboring
background clutter pixels in hyperspectral imagery (HSI). Com-
pared to backgrounds, anomalies have two main characteristics.
One is the spectral anomaly, i.e., their spectral signatures are
different from those associated to their surrounding backgrounds;
another is the spatial anomaly, i.e., anomalies occur as few pixels
(even subpixels) embedded in the local homogeneous backgrounds.
However, most of the existing anomaly detection algorithms for
HSI only employed the spectral anomaly. If the two character-
istics are exploited in a detection method simultaneously, better
performance may be achieved. The third-order (two modes for
space and one mode for spectra) tensor representation of HSI has
been proved to be an effective tool to describe the spatial and
spectral information equivalently; therefore, tensor representation
is convenient for exhibiting the two characteristics of anomalies
simultaneously. In this paper, a new anomaly detection method
based on tensor decomposition is proposed and divided into three
steps. Three factor matrices and a core tensor are first estimated
from the third-order tensor that is constructed from the HSI data
cube by using the Tucker decomposition, and their major and
minor principal components (PCs) are more likely to correspond
to the spectral signatures of the backgrounds and the anom-
alies, respectively. In the second step, a reconstruction-error-based
method is presented to find the first largest PCs along each mode
to eliminate the spectral signatures of the backgrounds as much
as possible, and thus, the remaining data may be modeled as the
spectral signatures of the anomalies with a Gaussian noise. Finally,
a CFAR test is implemented to detect the anomalies from the
remaining data. Experiments with simulated, synthetic, and real
HSI data sets reveal that the proposed method outperforms those
spectral-anomaly-based methods with better detection probability
and less false alarm rate.

Index Terms—Anomaly detection, hyperspectral imagery
(HSI), tensor representation, Tucker decomposition.

I. INTRODUCTION

COMBINING imaging technology and high spectral reso-
lution spectroscopy in a unique system, the hyperspectral

sensor provides a powerful means to discriminate the targets of
interest in a scene. In most practical situations, it is difficult to
specify the prior spectrum of the interested target in advance.
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Therefore, the target detection without any target information,
known as anomaly detection, is more preferred and practicable.
[1]–[5].

Anomalies usually refer to targets with a spot of pixels (even
subpixels) that stand out from the cluttered backgrounds in
hyperspectral imagery (HSI), and they have two main charac-
teristics. The first one is the spectral anomaly, i.e., the spectra
of anomalies are distinct from those of their surrounding back-
grounds. The second one is the spatial anomaly, i.e., anomalies
occur as few pixels (even subpixels) embedded in the local
homogeneous backgrounds. Various anomaly detection algo-
rithms have been developed by exploiting the two aforemen-
tioned characteristics. According to our comprehension, most
of the current anomaly detection algorithms place emphasis on
the spectral-anomaly characteristic, and they can be classified
into two broad categories, i.e., statistical modeling and geomet-
rical modeling techniques.

Statistical modeling techniques commonly assume that the
backgrounds follow a specified statistical distribution while
anomalies are far away from such distribution. Among the
works that belong to this category, the Reed–Xiaoli detector
(RXD) [6] is probably the most popular. In this method, the
multivariate Gaussian model is assumed to characterize the
background information. After estimating the mean vector and
covariance matrix by the samples selected from the whole scene
(or a local window), the Mahalanobis distance between each
test pixel and the statistical model is calculated and compared
with a threshold for the final discrimination. RXD is mathe-
matically tractable and of high computation efficiency. Despite
the popularity, there are two main problems with RXD. The
first problem is that the unimodal Gaussian model cannot al-
ways provide an adequate characterization for the backgrounds,
particularly when there are multiple materials. This problem
may lead to many false alarms in practice. Various efforts
have been made to address such problem. Some approaches are
still based on the Gaussian model, but they are designed for
making the model more effective. An example is the cluster-
based anomaly detection (CBAD) method, which segments the
scene into different spectrally homogeneous clusters and then
detects anomalies in individual clusters [7]. Another example is
the method based on the Gaussian-mixture model, combining a
set of unimodal Gaussian distributions to characterize the back-
grounds [2], [8]. It provides more accurate descriptions of com-
plex backgrounds by accounting for the presence of multiple
materials. Some other methods are based on the non-Gaussian
model for a better characterization of the backgrounds in real
HSI data, such as the anomaly detection algorithm based on el-
liptically contoured distribution [9], [10]. In addition, a number
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Fig. 1. Example for illustrating the different results of spectral-based and spectral–spatial-based anomaly detection methods.

of authors have observed that the data can be more Gaussian
in some directions than in others, so a hybrid Gaussian/
non-Gaussian algorithm was proposed in [11]. This method can
explicitly produce a probability density that is a product of the
multivariate Gaussian density in the Gaussian directions and a
more tailored distribution in the non-Gaussian directions. The
second problem is that the background samples often contain
also anomalous pixels and noise, which causes that the para-
meters of the statistical model cannot be estimated accurately,
resulting in a poor detection performance. To mitigate the
contamination of anomalous signatures when estimating the
background model, a lot of anomaly detection algorithms have
been proposed, such as the blocked adaptive computationally
efficient outlier nominator method [12], minimum covariance
determinant method [13], random-selection-based anomaly
detector [14], robust nonlinear anomaly detection (RNAD) [15],
weighted RXD [16], and discriminative metric learning-based
anomaly detection [17].

Geometrical modeling techniques are based on the key
assumption that background pixels can be approximately repre-
sented by a group of the major spectra/bases, while anomalies
cannot. Those spectra/bases are collected/extracted from the
whole image (or a local window). This type of method avoids
assuming any specific statistical model for the backgrounds.
As for this category, the subspace-based anomaly detection
method is the most typical [18]. This method assumes that
the background is well modeled as lying in a low-dimensional
subspace that is constructed by a set of bases, which are com-
monly derived from background endmembers (corresponding
to major and pure materials in the image) extracted from
the data or eigenvectors acquired by a linear transformation
(e.g., SVD). Then, every pixel is projected to the background
orthogonal subspace, and the residual is calculated for discrim-
inating whether the current pixel is an anomaly. The larger
the residual is, the more anomalous the pixel may be. Some
other methods use the original spectra of the whole scene and a
local window to represent each pixel. The pixel with a large
reconstruction residual is more probable to be an anomaly.

The sparse-representation-based detector [19], [20] and
collaborative-representation-based detector (CRD) [21] belong
to this category.

However, both of the two aforementioned techniques only
deal with vector features as inputs, known as the vector-based
anomaly detection method. In other words, they just process
each pixel as a spectral vector independently, without con-
sidering the spatial relationship between different pixels. In
those techniques, only the spectral-anomaly characteristic of an
anomaly is exploited. Some researchers suggest that consider-
ing the neighboring pixels can employ the spatial information,
such as the local RX [22], dual-window-based eigen separation
transform (DWEST) [23], and multiple-window anomaly de-
tection [24]. Nevertheless, these methods just analyze the spec-
tral difference in a relatively smaller region; neither the spatial
constraints between each pixel in the current local window
nor the spatial relationship between different local windows is
taken into consideration. As a result, the spectral information
is much superior to the spatial information in those methods.
The spatial anomaly is equivalently important as the spectral
anomaly, which means that an anomaly is not only spectrally
distinct from the spectral-homogeneous backgrounds but also
spatially isolated in an agglomeration of backgrounds. It is clear
that, if the two characteristics are exploited in an anomaly de-
tection method simultaneously, then better performance may be
achieved. To the best of our knowledge, there is still no method
that describes spectral anomaly equivalently with regard to the
spatial anomaly in an anomaly detection algorithm.

An example of the different results of spectral-based anomaly
detector and spectral–spatial-based anomaly detector is given in
Fig. 1, in which an HSI data cube collected over an urban area
(high spatial correlation) is modified by randomly permuting
the spatial coordinates (i, j) of the pixel vectors, thus removing
the spatial correlation. In both scenes, the application of a
spectral-based anomaly detector would yield the same analysis
results, while it is clear that, if the spectral-anomaly and spatial-
anomaly characteristics are jointly exploited (known as the
spectral–spatial-based method), the detection results should be
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extremely different. Hence, the spatial information present in
the original data may not be ignored in the anomaly detection
process.

In this paper, we propose a method for spectral–spatial anom-
aly detection in a novel point of view, which is based on tensor
decomposition. As indicated in some previous works within the
HSI data processing area, tensor representation has been proved
useful for analyzing the three-factor structure of HSI in many
fields, such as feature extraction [25], data compression [26],
denoising [27], [28], classification [29], [30], and material
identification [31]. HSI data can be intrinsically treated as a
three-order tensor (two modes for space and one mode for
spectra); by this way, both the spatial and spectral information
can be described equivalently, and it is convenient for exhibiting
the spectral anomaly and spatial anomaly simultaneously. The
proposed algorithm contains three main steps. First, we
employ a three-order tensor to represent the observed HSI
data cube and introduce the Tucker decomposition technology
to decompose such tensor into a core tensor and three factor
matrices. Thus, the major and minor principal components
(PCs) of the three factor matrices are likely to correspond to the
background and the anomaly information, respectively. Second,
a reconstruction-error-based method is present to find the first
largest PCs along each mode to eliminate the background
information as much as possible, and thus, the remaining data
may be modeled as the anomaly with a Gaussian noise. Finally,
a CFAR test is implemented to detect the anomalies from the
remaining data.

The remainder of this paper is arranged as follows. In
Section II, we give a brief description of the relevant tensor
algebra and then present the proposed anomaly detection algo-
rithm based on the Tucker decomposition in detail. After that,
the experimental results are reported in Section III, followed by
the conclusion.

II. PROPOSED ANOMALY DETECTION ALGORITHM

In this section, we first give a brief review of the relevant
concepts for tensor algebra that will be used in the proposed
algorithm.

For an N -order tensor, X ∈ RI1×I2×···×IN , where In(1 ≤
n ≤ N) shows the size of this tensor in each mode and an
arbitrary element of X is a scalar denoted by xi1i2···iN , in
which each in addresses the n-mode of X and 1 ≤ in ≤ In.
The n-mode unfolding of X is denoted by keeping the in-
dex in fixed and varying the other indices, which is denoted
as X(n) ∈ RIn×ΠN

i=1,i�=nIi . The n-mode rank of X , denoted
as rankn(X), is the column rank of X(n). If we let Rn =
rankn(X ) for n = 1, 2, 3, . . . , N , then we can say that X is a
rank-(R1, R2, R3, . . . , RN) tensor. The n-mode product of a
tensor X by a matrix A ∈ RJ×In is a tensor with entries (X ×
nA) ∈ RI1×···×In−1×J×In+1×···×IN . For more details, refer to
[32] and [33].

By employing the tensor representation and decomposition
technologies, the proposed algorithm (abbreviated as TenB in
the rest of this paper) is divided into three main steps, as
shown in Fig. 2.

A. Three-Order Tensor Representation and Decomposition for
HSI Data Cube

An HSI data cube is represented by a three-order tensor
X ∈ RI1×I2×I3 , where I1, I2, and I3 indicate the image height,
image width, and spectral channels of HSI, respectively. xi1i2i3

(1 ≤ in ≤ In, n = 1, 2, 3) is related to the point that is locating
at pixel-(i1, i2) and spectral band-i3. If the HSI data cube is
considered independent along each mode, we can get the fiber
analogs of such data (as shown in Fig. 3). It is noteworthy
that, for a routine spectral-based anomaly detection technique,
the HSI data are processed as the spectral vector form. In
other words, each spectrum is treated independently, without
considering the spatial constraints.

Then, the Tucker decomposition [33], [34] is applied onto
the tensor X ; as a result, three factor matrices along the three
modes and a core tensor are obtained, shown in (1) as follows:

X ≈ G× 1A× 2B × 3C (1)

in which A ∈ RI1×J1 , B ∈ RI2×J2 , and C ∈ RI3×J3 are the
factor matrices. The tensor G ∈ RJ1×J2×J3 is called the core
tensor, and its elements gi1i2i3 represent the level of interaction
between the different components. Elementwise, the Tucker
decomposition in (1) is

xi1i2i3 =

J1∑
j1=1

J2∑
j2=1

J3∑
j3=1

gj1j2j3ai1j1bi2j2ci3j3 . (2)

Here, J1, J2, and J3 denote the number of components
(i.e., columns) in the factor matrices A, B, and C, respectively.
Fig. 4(a) illustrates the Tucker decomposition on a three-order
tensor, and Fig. 4(b) gives an example for the elementwise
representation of such decomposition.

The optimization problem for the Tucker decomposition that
we wish to solve is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f = min
G,A,B,C

‖X −G× 1A× 2B × 3C‖2F
subject to G ∈ RJ1×J2×J3 ,

A ∈ RI1×J1 , B ∈ RI2×J2 , C ∈ RI3×J3 ,
ATA = I, BTB = I, CTC = I.

(3)

Since A, B, and C have orthonormal columns, from (3), we
can obtain G ≈ X × 1A

T × 2B
T × 3C

T . As stated in [34], the
minimization in (3) is equivalent to the maximization of the
function⎧⎪⎨
⎪⎩

g = max
A,B,C

‖X × 1A
T × 2B

T × 3C
T ‖2F

subject to A ∈ RI1×J1 , B ∈ RI2×J2 , C ∈ RI3×J3 ,
ATA = I, BTB = I, CTC = I.

(4)

To solve the optimal problem in (4), the alternating least
squares algorithm [35], [36] is feasible and usually employed,
which was developed by Kroonenberg and De Leeuw [37] in
1980 for a three-order tensor. The basic idea of this solution
comes from the fact that any one of the factor matrices could
be simply acquired by an eigenvalue decomposition problem
when the remaining two matrices are fixed. Trivially, Jn < In
(n = 1, 2, 3), meaning that the Tucker decomposition offers
a straightforward approach of compression for preserving the



5804 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 10, OCTOBER 2016

Fig. 2. Flowchart of the proposed approach.

most significant information, with the insignificant information
being truncated. However, in this paper, our aim is to extract
the anomaly signals from the data, and the anomaly signals
may quite possibly exist in the insignificant part. Therefore, we
permit Jn = In (n = 1, 2, 3), for the purpose of maintaining the
complete information which is composed by all the eigenvalues
and eigenvectors. Therewith, all the three factor matrices A, B,
and C are square, and the size of the core tensor is the same
with the input tensor.

In fact, the Tucker decomposition is a form of higher order
PCA; as a result, the column eigenvectors of each factor matrix
are ordered by decreasing magnitude of the respective eigenval-
ues. If each eigenvector is interpreted as a piece of information,
the larger the eigenvalue is, the more significant the information
that it represents. Generally, in an HSI, backgrounds turn up
with high probabilities as the major information, while anom-
alies occur with low probabilities as minor information. Under
this circumstance, the first largest eigenvectors of each factor
matrix represent the components that address the background
information along each mode, while the anomalies are probably

to lie in the remaining eigenvectors. Here, we give an example
for illustrating the spatial-anomaly characteristic captured by
the tensor representation technique. In Fig. 5(a), there is an HSI
data cube with a spatial size of 11 × 11. The main background
pixels are colored red. Another 3 × 3 sized background colored
blue is in the center, and an anomaly pixel locating at pixel-
(10, 10) is colored yellow. According to the one-mode fiber
analog of the tensor (see Fig. 3), the more image height vectors
an object contains, the more column information it owns.
Consequently, the corresponding eigenvector of such object is
likely to be more former in A, while on the opposite side, the
eigenvector of the object that contains less image height vectors
may be ranked latter. Analogically, it is the same with the image
width mode. An anomalous target may be neither wider nor
longer than the backgrounds. Therefore, the eigenvectors of
anomalous targets are ranked latter in the factor matrices. This
is just the embodiment of the spatial-anomaly characteristic.
Taking the first band of the HSI for example, it contains three
types of vectors: 1) with 11 red pixels; 2) with 8 red pixels and
3 blue pixels; and 3) with 10 red pixels and 1 green pixel. Their
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Fig. 3. Three fiber analogs of an HSI data cube.

Fig. 4. Visual illustration of the Tucker decomposition. (a) Tucker decomposition on a three-order tensor. (b) Example for the elementwise representation of such
decomposition.

Fig. 5. Example for illustrating the spatial-anomaly characteristic captured by the tensor representation technique. (a) HSI data cube with two backgrounds and
an anomaly. (b) Result of the image height vectors (the first band) ranked in line with the number of vectors. (c) Eigenvectors for representing those vectors in (b).

numbers are 7, 3, and 1, respectively. The result of the image
height vectors ranked in line with their numbers is shown in
Fig. 5(b). In fact, the same vectors may be represented by one
eigenvector. Therefore, three eigenvectors [shown in Fig. 5(c)]
are needed to represent the data in Fig. 5(b). It can be seen that
the eigenvectors corresponding to the background are ranked
more former than the anomalies.

B. Using the Major PCs to Eliminate Background Information

To detect anomalies effectively, one of the key challenges
is to eliminate the background that presents as interfering

signatures. Traditional spectral-based methods represent the
background information by a set of spectral vectors xi ∈
RI3(1 ≤ i ≤ I1I2), in which I3 gives the spectral channels
and I1I2 is the total number of pixels in HSI. Consequently,
this branch of approaches only eliminates the backgrounds in
the spectral domain. Among those kinds of anomaly detectors,
SSRX [38] is the most popular one, which is a modification
to the RXD. In SSRX, several high-variance PCs are deleted
before applying the RXD, as these PCs are assumed to capture
nonnormal background clutter variance. In this case, determin-
ing the number of the major PCs (e.g., K) is crucial. K is
chosen to capture background information as much as possible
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while hopefully not containing anomaly content. Unfortunately,
there is no reliable method to select an optimal value for the
parameter automatically so far. The energy-cumulative method
is used most commonly. It computes the sum of the eigenvalues
from the first to the last one, until the cumulative energy
achieves a specified ratio to the total energy. In this method,
the ratio is difficult to determine for different HSI data sets, and
it holds no physical meaning. Under certain conditions, SSRX
can provide better background suppression relative to the RXD
if the anomaly content falls outside the leading PCs.

In contrast, the proposed TenB algorithm eliminates back-
ground information along the three modes simultaneously. That
is to say, background information is assumed to be represented
by both the major PCs in the spectral and spatial domains.
In a real-world situation, the background pixels belonging to
the same kind may be likely to huddle together. As a result,
background information not only dominates in the spectral
domain but also in the spatial domain. Therefore, it can make
sure that background information could be eliminated more
exhaustively by this way.

Similar to SSRX, the PC numbers also need to be determined
in TenB. In this paper, we employ a reconstruction-error-based
method to deal with this problem, described as follows. XBg

is defined as the estimated background of X , and the relative
reconstruction error between XBg and X is denoted as ε =
‖X − XBg‖/‖X‖. As K goes up from 0 to the max PC number,
ε descends from 1 to 0. The smaller ε is, the more information
of X is preserved in XBg . It is assumed that each major PC
may represent one or more kinds of background. Therefore,
when ε leaps down, it indicates that a new major material (much
possibly a kind of background) appears in XBg; in the other
side, when ε decreases slowly, it indicates that some minor
material is added to XBg. Under these assumptions, the first
point of slow change is used to determine K . This method
owns better applicability than the traditional energy-cumulative
method, and it can be interpreted in a physical way.

There are three PC numbers (e.g., K1, K2, and K3 along
each mode, respectively) needed to be determined in TenB.
Here, we give the process of determiningK1 for example. First,
the tensor X is unfolded along the image height mode, resulting
in a matrix denoted as X(1) ∈ RI1×(I2I3). Second, SVD is
applied ontoX(1), and the corresponding eigenvectors (denoted
as v(1) = [v1(1), v

2
(1), . . . , v

I1
(1)], v

i
(1) ∈ RI1) are obtained. Third,

the first eigenvector to the last eigenvector is selected one by
one to reconstruct the background of X(1), denoted as XBg

(1) .

The relative reconstruction error ε1 between X(1) and XBg
(1)

is computed, and the first point of ε1 that changes slowly is
determined for K1. It is assumed that the first K1 largest PCs
of X(1) delegate the major information along the image height
mode. Analogically, K2 and K3 can be determined in the same
manner, and they delegate the major information along the
image width mode and spectral mode, respectively.

As Ki (i = 1, 2, 3) have been determined, all the three
factor matrices can be divided into two parts. Such two sub A
matrices, referred to as AS ∈ RI1×K1 and AI ∈ RI1×(I1−K1),
indicate the significant and insignificant parts of factor matrix
A; by analogy, BS ∈ RI2×K2 and BI ∈ RI2×(I2−K2) are the

two parts of B, and CS ∈ RI3×K3 and CI ∈ RI3×(I3−K3)

are the two parts of C. Correspondingly, the core tensor G
is divided into eight parts: GSSS ∈ RK1×K2×K3 , GISS ∈
R(I1−K1)×K2×K3 , GSIS ∈ RK1×(I2−K2)×K3 , GIIS ∈
R(I1−K1)×(I2−K2)×K3 , GSSI ∈ RK1×K2×(I3−K3), GISI ∈
R(I1−K1)×K2×(I3−K3), GSII ∈ RK1×(I2−K2)×(I3−K3), and
GIII ∈ R(I1−K1)×(I2−K2)×(I3−K3). In Fig. 2-2), the red color
part of each matrix indicates the significant PCs, and the green
color indicates the insignificant PCs, respectively. The same
color indications are present in the core tensor.

Three subfactor matrices along each mode and one corre-
sponding subcore tensor can reconstruct a tensor with the same
size as tensor X , so there are eight subtensors that can be recon-
structed, which are listed as XSSS , XISS ,XSIS ,XIIS ,XSSI ,
XISI ,XSII ,XIII , correspondingly. For example, the first
subtensor is reconstructed as⎧⎨
⎩

XSSS = GSSS × 1AS × 2BS × 3CS

where GSSS=G1:K1,1:K2,1:K3

AS=A:,1:K1
, BS=B:,1:K2

, CS=C:,1:K3
.

(5)

It is worth noting that the size of every reconstructed tensor
is equivalent to that of the input HSI data. As a linear transfor-
mation, the Tucker decomposition satisfies the additional rule.
Hence, the sum of the eight subtensors is equal to the original
tensor. Here, we have

X = XSSS + XISS + XSIS + XIIS + XSSI

+ XISI + XSII + XIII . (6)

We assume that the background information is composed
of the significant part along every mode and the anomalies
are contained in the remaining part. Therefore, the background
information is represented by

XBg=XSSS+XISS+XSIS+ XIIS+XSSI+XISI + XSII .
(7)

Notably, the SSRX is a special version of TenB, when
the TenB method just processes the data along the spectral
mode, known as TenB3. In other words, when the background
information is estimated only by the major PCs of X(3), SSRX
is equivalent to TenB3. This conclusion will be verified in the
experimental reports.

C. CFAR Detector Is Implemented on the Data Reconstructed
by the Remaining PCs

When the number of major PCs is set properly, the back-
ground information can be well eliminated; then, the anomaly
may possibly lie in the remaining data XAn. Such XAn is
assumed to be modeled as the anomaly signatures with a
Gaussian noise. Under this condition, a CFAR detection algo-
rithm is expected to detect the anomalies because the CFAR
detection algorithm considered in [39] is suitable for detecting
a target pattern in one main image scene and a number of
other noise-only reference image scenes that contain negligible
signal energy.
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Fig. 6. Simulated HSI data. (a) Three selected spectra of three different materials. (b) First band of the data.

Let each spectrum in XAn be denoted by x =
[x1, x2, . . . , xL]

T ∈ RL. Define Xb to be an L×N matrix,
where N denotes the pixel number of the whole image and
each pixel is represented as a column in the sample matrix Xb.
The two competing hypotheses that the CFAR must distinguish
are given by

H0 :x = n (Anomaly absent)

H1 :x = as+ n (Anomaly present) (8)

where n is a vector that represents the noise and s is the
anomaly spectral signature given by s = [s1, s2, . . . , sL]

T . The
model assumes that the data arise from two normal probability
density functions with the same covariance matrix but different
means. Under H0, the noise is modeled as N(μn,Cn), and
under H1, the data are modeled as N(μn + s,Cn). μn and
Cn are the noise mean and covariance. Assuming a single pixel
r as the observation test spectrum, the output of the CFAR is
given by

DCFAR(r) = (r− μn)
TC−1

n (r− μn). (9)

III. EXPERIMENTAL RESULTS

In order to illustrate the superiority of TenB in background
estimation and anomaly detection, a detailed analysis for a
simulated HSI data set was given at first. Then, the experimental
analysis was done on both synthetic and real HSI data sets.

A. Data Set Description

Simulated Data: We use three reflectance spectra [cover-
age from 400 to 2500 nm with a total of 420 bands, shown
in [Fig. 6(a)] representing aspen_leaf, albite, and smectite
as downloaded from the USGS spectroscopy library [40] to
generated an HSI data set. The three materials are identified
as “Aspen_Leaf-A DW92-2” (Spectrum 1#), “Albite HS66”
(Spectrum 2#), and “Ammonio-Smectite GDS86” (Spectrum 3#).

The size of the simulated HSI is 100 × 100. First, Spectrum 1#

is used to fill the whole data, as one kind of background
(denoted as B1). Then, a 40 × 40 block in the upper left corner
is replaced by Spectrum 2#, as another kind of background
(denoted as B2). In addition, nine anomalous targets (denoted
as T ) are implanted into the data. We generate the anomalous
targets using a synthetic spectral signature z with a specified
abundance fraction f from a desired target t, contaminated by
a background signature b [41], [42]. For the simulations, we
use a simple linear mixture model as follows:

z = f · t+ (1− f) · b. (10)

Here, we consider the Spectrum 3# as t and Spectrum 1# as b.
According to (10), the anomalous targets are implanted with
the abundance fractions f = 0.6, 0.8, and 1 for each row,
respectively. Furthermore, 30-dB Gaussian white noise is added
into the data set. Fig. 6(b) shows the first band of the simulated
HSI data.

Synthetic Data: The synthetic data were generated using a
Hyperion data set covering an agricultural area. It was down-
loaded from the EO-1 satellite image website. The original
data set contains 242 bands covering the visible, near-infrared,
and short-wave infrared bands (400–2500 nm) with a spectral
resolution of 10 nm. After the removal of the low-SNR bands
and the uncalibrated bands, 193 bands are used. The selected
portion (illustrated in Fig. 7) has pixels of 120 × 180 in size.

In this paper, we have decided to use a target implantation
method to simulate a set of anomalous targets in the considered
Hyperion data set. The advantage of using a target implantation
method is that we can evaluate the performance of the detectors
in a totally controlled environment [43]. The image portion
where the targets have been implanted is denoted as ROI-1 [see
Fig. 7(a)], which is an open vegetation region with dimensions
120× 180× 193 and contains a few anomalous pixels. Four
types of vegetation can be considered as the main background
in this region. Their spectra are shown in Fig. 7(b) with high
correlation to each other (denoted as B1, B2, B3, and B4).
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Fig. 7. Hyperion data set (ROI-1) for experiment. (a) False color image of the scene with implanted targets. (b) Spectra of the four main backgrounds.
(c) Locations of the implanted targets. (d) Target spectrum.

Fig. 8. HYDICE data set for experiment. (a) False color of the original data set. (b) False color of ROI-2 scene. (c) True distribution of all the anomalous targets
in ROI-2.

Some background–background mixed pixels are present on
the background boundary. The characteristic of the target is
selected from the original image that is the most different from
the main background endmembers. Fig. 7(d) shows the target
spectrum (denoted as T ). 5 × 5 targets have been implanted into
ROI-1 using (10), where the abundance fractions f = 0.8, 0.65,
0.5, 0.35, and 0.2 for each row, respectively. The sizes of targets
are different in each column, with 1 × 1 pixel, 2 × 1 pixels, 1 ×
2 pixels, 3 pixels, and 2 × 2 pixels in each column, respectively.
Fig. 7(c) shows the locations of the implanted targets in ROI-1,

and the details of the targets’ shape are listed on the top. The
percentage of target pixels in the entire image is approximately
0.3%.

Real Data 1: A Hyperspectral Digital Imagery Collection
Experiment (HYDICE) hyperspectral data set is obtained from
an aircraft platform. This data set covers an urban area and
has a spectral resolution of 10 nm and a spatial resolution of
1 m. The image scene contains a vegetation area, a construction
area, and several roads, where there are some vehicles. The
HYDICE imaging sensor generates 210 bands covering the
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Fig. 9. ROI-3 for experiment. (a) False color of the scene. (b) True distribution
of all the anomalous targets in ROI-3.

whole spectral range of 400–2500 nm, but only 162 spectral
bands are used after discarding the water absorption and low-
SNR bands. The false color image of the whole data set has a
size of 307 × 307, as shown in Fig. 8(a). However, the only
definite ground truth is that, in the upper right of the scene, the
anomalous targets are the vehicles embedded in the different
backgrounds. Therefore, we only use the subimage covering
this area in our experiments. A scene of 79 × 100 pixels called
ROI-2 [see Fig. 8(b)] and the anomalous targets’ positions are
shown in Fig. 8(c). There are nine vehicles with 20 pixels in
total, which are regarded as the anomalous targets in the scene.

Real Data 2: This data set is also cut from the HYDICE data
set. The scene consists of 80 × 60 pixels [as shown in Fig. 9(a)]
with 162 bands, denoted as ROI-3. There are nine vehicles
with 10 pixels in total, which are regarded as the anomalous
targets in the scene [see Fig. 9(b)]. Compared to ROI-2, ROI-3
is more complex with grass, tree, road, park, and buildings
(with different materials and shapes). Furthermore, some of the
anomalous targets are difficult to be detected, including
the targets in the background–background mixing area, near
the buildings, and even in the shadow of the buildings.

B. Experimental Results and Analysis

The RXD [6] and SSRX [38] detectors are known to be the
standard anomaly detectors that form the basis for comparing
the performance of a new anomaly detector. In our experi-
ments, the SSRX algorithm is used for comparing with the
TenB algorithm in background elimination. Furthermore, we
choose several other conventional anomaly detection methods
for evaluation and comparison in the performance of anomaly
detection, including CBAD [7], RNAD [15], CRD [21], and
DWEST [23].

Since the images produced by the detection algorithms are
generally grayscale, the target detection and discrimination are
usually carried out by visual inspection. In order to avoid
such human interpretation and illustrate a more intuitionistic
comparison, an adaptive thresholding method [44] is designed
to automatically select an appropriate threshold to segment
targets from the image background. This method is adaptive and

only depends on the grayscale image resulting from anomaly
detection, but not on the original image. The threshold is
computed by

Δ = u+ (M − u) ·
√

u

M
(11)

where u is the mean value and M is the max value of the gray-
level image G derived from the detection result. Generally, G is
with the same spatial size of the processed data. Each pixel’s
value (having been normalized to 0-255) in G indicates the
detection energy of the corresponding pixel in the input data.
Every anomaly detector can gain a G. Then, we compute u
and M from the individual G and construct the corresponding
threshold Δ.

Detection performance is commonly measured in terms of
receiver operating characteristic (ROC) curves [45]. By taking
a threshold, the detection result can be transformed to a binary
image, where value 1 represents that targets are present in the
pixel and value 0 represents that targets are absent. Based on
the ground truth, by taking all possible thresholds, the ROC
curve can plot the varying relationship between the detection
probability Pd and false alarm rate Pf , which are defined as

Pd =
Ndetection

Ntotal
Pf =

Nfalse

Nimage
(12)

where Ndetection represents the number of anomalous target
pixels detected under a certain threshold and Ntotal represents
the total number of anomalous target pixels in the image;
Nfalse represents the number of background pixels having been
detected, and Nimage represents the total pixel number of the
image. A superior detector would lie nearer the top left or
a larger area under the curve (AUC). Moreover, the AUC is
computed to evaluate the detection performance for further
validation.

1) Experiment 1—Simulated HSI Data:
a) Background estimation: As mentioned earlier in

Section II-B, the relative reconstruction error ε is considered
as an important criterion for evaluating the performance of
background estimation. Fig. 10 shows the different ε with the
number of the major PCs increasing, where TenB1, TenB2,
and TenB3 denote the reconstruction background data XBg

acquired along the three different modes, respectively. For
example, the X 1

Bg is reconstructed from the first PC to the last
PC along the image height mode while keeping the other two
modes with their full PCs, defined as

(
X 1

Bg

)
i
= G1

i × 1Ai × 2B × 3C (13)

where G1
i ∈ Ri×I2×I3 , Ai ∈ RI1×i, B ∈ RI2×I2 , C ∈ RI3×I3 ,

1 ≤ i ≤ I1.
From Fig. 10, we can see that, as the number of the PCs

increases, ε decreases. This phenomenon illuminates that the
information is preserved more completely in XBg when the
PC number is larger. Fig. 10(a) shows that, when the PC
number rises from one to two, ε slumps, and when the PC
number keeps going up from three, ε decreases slowly. This
phenomenon demonstrates that the major information along
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Fig. 10. Relative reconstruction error curves of simulated HSI data. (a) TenB method along the first mode. (b) TenB method along the second mode. (c) TenB
method along the third mode and SSRX method.

the image height mode is contained in the first two PCs. The
same conclusion could be drawn from Fig. 10(b). Fig. 10(c) has
verified the conclusion that SSRX is equivalent to TenB3 and
the PC number can be determined as one.

Aside from the relative reconstruction error, the recon-
structed spectral curves are also considered to evaluate the
background estimation. If the background is estimated accu-
rately, the spectral curves of different materials may be well
reconstructed. In Fig. 11, we compare the reconstructed spectral
curves with the original spectral curves of the three different
kinds of materials. The spectra of pixel-(60, 60), pixel-(20,
20), and pixel-(90, 90) are selected for delegating B1, B2, and
T , respectively. The first row of Fig. 11 shows the results of
the XBg reconstructed by one, two, and three PCs in SSRX.
The remaining three rows of Fig. 11 are the results of the
XBg reconstructed by the TenB algorithm, with the spectral
PC number changed in each column and with the spatial PC
number changed in each row.

Fig. 11(a) shows that SSRX-1 has only reconstructed one
kind of curve that corresponds to the most important back-
ground (B1). In Fig. 11(b), two kinds of curves have been
reconstructed by SSRX-2, which are the spectral curves of
B1 and B2. Moreover, some information of T has also been
reconstructed (blue curve). This is because T ’s spectrum is
highly correlative with B2’s spectrum, and the information
of these two spectra may be contained in the same spectral
PC. This phenomenon reflects that only using spectral PCs
cannot separate two kinds of spectra with high correlation,
which is one of the main shortcomings of the spectral-based
method. Fig. 11(c) shows the well-reconstructed result of the
three spectra by SSRX-3. Fig. 11(d)–(f) shows that the recon-
structed curves do not change, although the spectral PC number
changed. This is because the PC numbers of two spatial modes
are set to one. In this case, only the most important material
of X can be reconstructed in XBg. As a result, the shape of
the green curve (indicates reconstructed B2) is almost the same
as that of the cyan curve (indicates original B1), and the red
and blue curves can be regarded as reconstruction error. In
Fig. 11(g), although the spatial PC numbers are two, the spectral
PC number is one. Hence, still only one kind of curve is well
reconstructed. Analogously, Fig. 11(j) has also reconstructed
one kind of curve (B1) because the spectral PC number is
one, too. Due to that fact that the spatial PC numbers are set
to two, Fig. 11(h) and (i) shows that two kinds of curves are
well reconstructed. Fig. 11(l) shows that all the three kinds of

materials are well reconstructed. This is because the three PC
numbers are all selected as three, which is accordant with the
real material number of X . It is worth noting that Fig. 11 shows
the reconstructed spectra in the background component of the
HSI data.

From all the results recorded in Figs. 10 and 11, some
conclusions may be drawn as follows: 1) The user-specified
parameters (PC numbers) are more convenient for determining
by the reconstruction-error-based method than by the traditional
energy-cumulative method; 2) due to the background estima-
tion being restricted by both the spectral and spatial PCs in the
TenB algorithm, the TenB algorithm can separate the spectra
with high correlation; and 3) the TenB algorithm is superior to
the SSRX algorithm in background estimation.

b) Anomaly detection: Since the anomalies will be de-
tected in XAn, the characteristic of XAn should be analyzed
primarily. The signal-to-interference-plus-noise ratio (SINR)
criterion is used to measure the spectral behavior of anomaly
with the background, denoted as SINR = T TΓ−1T [46], where
T is the anomaly spectrum [pixel-(90, 90)] and Γ is the image
covariance matrix. The anomaly is more prominent in the
background when SINR is larger. The SINR results are reported
in Table I. It is clear that the SINR of the data reconstructed by
TenB-(2, 2, 1) is the largest. This phenomenon indicates that the
TenB-(2, 2, 1) is the most proper for anomaly detection. Such
conclusion could be further confirmed by the comparisons of
the reconstructed curves of the three materials in XAn, which
are shown in Fig. 12. It illustrates the differences between
the three materials. The spectrum of pixel-(90, 90) is more
distinct than the other two spectra, and T is more easily to be
detected. Fig. 12(g) has shown the most difference. It is the data
reconstructed by TenB-(2, 2, 1).

Combining all the experiments mentioned earlier, some con-
clusions may obtained: 1) If only considering the information
preservation, SSRX-3 and TenB-(3, 3, 3) are both the best be-
cause they can well reconstruct all the materials’ spectra in X .
Moreover, the PC numbers of the three modes are all 3, which
reveals the actual material number contained in the original
data. 2) If the aim is both background estimation and anomaly
detection, neither SSRX-3 nor TenB-(3, 3, 3) is appropriate,
but the TenB-(2, 2, 1) is. This is because, in the XBg of TenB-
(3, 3, 3), not only the background information is reconstructed
but also the anomaly information. In this condition, little or
even no anomaly information remained in XAn. Therefore, the
SINR is worse, and the detection result of XAn is bad. On the
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Fig. 11. Comparisons between reconstructed spectral curves and original curves of the three different kinds of materials in XBg . The first row shows the results
of SSRX with one, two, and three PCs to reconstruct, denoted as SSRX-1 for (a), SSRX-2 for (b), and SSRX-3 for (c). The second row shows the results of
TenB with one, two, and three PCs along the spectral mode to reconstruct (the PC number along the two spatial modes is one), denoted as TenB-(1, 1, 1) for (d),
TenB-(1, 1, 2) for (e), and TenB-(1, 1, 3) for (f). The remaining two rows are analogical to the second row with the spatial PC number changed, which are the
results of TenB-(2, 2, 1) for (g), TenB-(2, 2, 2) for (h), TenB-(2, 2, 3) for (i), TenB-(3, 3, 1) for (j), TenB-(3, 3, 2) for (k), and TenB-(3, 3, 3) for (l).

TABLE I
SINR COMPARISONS FOR SIMULATED HSI DATA

other hand, in the XBg of TenB-(2, 2, 1), only the background
information is well reconstructed, and the anomaly information
is retained in XAn. In this case, XAn is assumed to be modeled
as the anomaly signatures with residual error (assumed to be

a Gaussian noise). As a result, anomalies may be viewed as
lying in a unimodal Gaussian background. Fig. 13 shows the
histograms of the first band of the original data, XAn recon-
structed by SSRX-1 and XAn reconstructed by TenB-(2, 2, 1),



5812 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 10, OCTOBER 2016

Fig. 12. Reconstructed spectral curves in XAn. The first row shows the results of SSRX with one, two, and three PCs to reconstruct, denoted as SSRX-1 for
(a), SSRX-2 for (b), and SSRX-3 for (c). The second row shows the results of TenB with one, two, and three PCs along the spectral mode to reconstruct (the
PC number along the two spatial modes is one), denoted as TenB-(1, 1, 1) for (d), TenB-(1, 1, 2) for (e), and TenB-(1, 1, 3) for (f). The remaining two rows are
analogical to the second row with the spatial PC number changed, which are the results of TenB-(2, 2, 1) for (g), TenB-(2, 2, 2) for (h), TenB-(2, 2, 3) for (i),
TenB-(3, 3, 1) for (j), TenB-(3, 3, 2) for (k), and TenB-(3, 3, 3) for (l).

Fig. 13. Histograms of the first band of different data sets. (a) Original data. (b) XAn reconstructed by SSRX-1. (c) XAn reconstructed by TenB-(2, 2, 1).
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Fig. 14. Detection results for the simulated data. (a) Three-dimensional plot of RXD. (b) Three-dimensional plot of SSRX-1. (c) Three-dimensional plot of TenB-
(2, 2, 1). (d) Binary image of (a) under the adaptive threshold. (e) Binary image of (b) under the adaptive threshold. (f) Binary image of (c) under the adaptive
threshold.

Fig. 15. Relative reconstruction error curves of ROI-1. (a) TenB method along the first mode. (b) TenB method along the second mode. (c) TenB method along
the third mode and SSRX method.

respectively. It is clearly that the original data are a multimodal
distribution [see Fig. 13(a)] while the remaining data after back-
ground elimination are more likely to be a unimodal Gaussian
distribution [see Fig. 13(b) and (c)]. TenB-(2, 2, 1) has shown
a better Gaussian characteristic than SSRX-1 with the mean of
0. The CFAR test is considered as a good strategy for anomaly
detection in this type of data.

Basing on the aforementioned analyses, a CFAR test is
implemented to detect the anomalies from XAn. The detection
results are shown in Fig. 14. From such figure, we can see
that, compared to the background, the detection energy of the
anomaly increases when background is eliminated in advance,
particularly in the TenB-(2, 2, 1) method. When comparing
the binary detection results, an important phenomenon is that
only the nine real anomalous targets have been detected in
TenB-(2, 2, 1) [see Fig. 14(f)]. On the other hand, in RXD,
the whole pixels of B2 are detected as the anomalies, but the
low-abundance-fraction anomalous targets (the first row) have
not been detected [see Fig. 14(d)]; in SSRX-1, although all the
nine real anomalous targets have been detected, some pixels

Fig. 16. Tensor reconstruction results of ROI-1 by TenB-(4, 4, 3). (a) Three-
dimensional data cube of the original ROI-1. (b) Three-dimensional data cube
of the XBg . (c) Three-dimensional data cube of the XAn.
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Fig. 17. Histograms of the first band of different data sets. (a) Original data. (b) XAn reconstructed by SSRX-3 for ROI-1. (c) XAn reconstructed by TenB-(4, 4, 3)
for ROI-1.

Fig. 18. Comparisons between reconstructed spectral curves and original curves of the backgrounds and target in XBg . The first row shows the results of SSRX
with three and four PCs to reconstruct, denoted as SSRX-3 for (a) and SSRX-4 for (b). The second row shows the results of TenB, denoted as TenB-(4, 4, 3) for
(c) and TenB-(5, 5, 4) for (d).

of B2 are also detected as the anomalies [see Fig. 14(e)]. This
phenomenon has proved that, when detecting the anomalies, the
RXD and SSRX-1 methods only exploit the spectral anomaly
but do not consider the spatial anomaly. As mentioned earlier,
an anomaly possesses spectral anomaly and spatial anomaly
simultaneously. Therefore, in this example, only T is consid-
ered as actual anomalous targets, but not B2, notwithstanding
that the difference between the spectra of B2 and B1 is larger
than that between the spectra of T and B1. B2 only owns
spectral anomaly. In fact, an anomaly may not contain such
large number of pixels. Therefore, B2 is more likely to be a
kind of background than to be an anomaly. The detection results
have shown the distinction between the spectral-based anomaly
detection method and the spectral–spatial anomaly detection
method.

2) Experiment 2—ROI-1: In order to determine the PC num-
ber, like Experiment 1, we analyze the relative reconstruction
error along different modes at first. The results are shown in
Fig. 15. According to Fig. 15, the spectral PC number is set
to two, and the two spatial PC numbers are set to four. As a
result, SSRX-3 and TenB-(4, 4, 3) are considered for anomaly
detection in the following content.

The tensor reconstruction results of ROI-1 according to the
process of II-C are shown in Fig. 16. As can be seen, two
subtensors are obtained from the decomposition of the original
data cube [see Fig. 16(a)], where XBg provides the background
scene with scarcely any anomalous signals [see Fig. 16(b)] and
XAn provides a scene with the prominence of the anomalies
[see Fig. 16(c)]. Fig. 16 has proved that the TenB-(4, 4, 3)
method can separate background information and anomaly
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Fig. 19. Reconstructed spectral curves in XAn. The first row shows the results of SSRX with three and four PCs to reconstruct, denoted as SSRX-3 for (a) and
SSRX-4 for (b). The second row shows the results of TenB, denoted as TenB-(4, 4, 3) for (c) and TenB-(5, 5, 4) for (d).

information effectively. Furthermore, Fig. 17 has shown the
Gaussian characteristic of different data sets. It is clear that
the TenB-(4, 4, 3) method has got a most proximal unimodal
Gaussian distribution like background.

Here, we also give the spectra reconstruction experimental
analysis on ROI-1. In Fig. 18, we compare the reconstructed
spectral curves with the original spectral curves of the back-
grounds and target. If we list all the subfigures for the combina-
tion of parameters (spectral PC number and spatial PC number)
like Fig. 11, each subfigure could be too small for reading.
Therefore, we just list the two most important subfigures for
SSRX and TenB, respectively. One subfigure delegates the most
proper parameter for background spectra reconstruction only.
Fig. 18(a) is for SSRX-3, and Fig. 18(c) is for TenB-(4, 4, 3).
The other subfigure delegates the most proper parameter for
the whole spectra (background and target) reconstruction.
Fig. 18(b) is for SSRX-4, and Fig. 18(d) is for TenB-(5, 5, 4).
Fig. 18(a) and (c) shows that SSRX-3 and TenB-(4,4,3) have
well reconstructed the four backgrounds, while the target spec-
trum has not been reconstructed. Due to the fact that B2
and B4 are highly correlated in the spectral domain, setting
the spectral PC number as three is enough for reconstructing
the four backgrounds. By analogy, only four spectral PCs are
needed for the whole spectra reconstruction.

The only difference in Fig. 18(a) and (c) is the reconstructed
T . In Fig. 18(a), the shape of the reconstructed T is likely to be
a mixed spectrum by the backgrounds, but its reflectance am-
plitude is close to the original T (larger than the backgrounds)
in some band ranges. This phenomenon indicates that some
information of T may be reconstructed in the XBg of SSRX-3.

TABLE II
SINR COMPARISONS FOR ROI-1

On the other hand, in Fig. 18(c), the reconstructed T is almost
the same as B4, meaning that hardly any information of T is
contained in the XBg of TenB-(4, 4, 3). Fig. 18(b) and (d) shows
that B1, B2, B3, B4, and T are all well reconstructed. TenB-
(5, 5, 4) obtains better reconstructed T than SSRX-4.

Fig. 19 shows the corresponding results of the reconstructed
spectra in the XAn. As shown in the figure, T is more prominent
in Fig. 19(c) than in Fig. 19(a), meaning that T is more easily
to be detected in the XAn of TenB-(4, 4, 3). Such conclusion
could be further confirmed by the comparisons of SINR listed
in Table II. The SINR of TenB-(4, 4, 3) is the largest.

For illustrative purposes, Fig. 20 presents the anomaly detec-
tion results of the three considered algorithms applied to ROI-1.
The results presented in Fig. 20(d)–(f) have been obtained by
applying a segmentation with the threshold computed in (11) to
the direct detection results, resulting in a set of binary images
that can be used as an indication to evaluate the performance
of the different compared algorithms. From Fig. 20, several
conclusions may be obtained: 1) The TenB-(4, 4, 3) method
outputs the best separability of background–anomaly; 2) TenB-
(4, 4, 3) has detected all the anomalies in the image, while
SSRX-3 and RXD have missed some low-abundance-fraction
anomalous targets (RXD is worse); and 3) both SSRX-3 and
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Fig. 20. Detection results for Hyperion data set (ROI-1). (a) Three-dimensional plot of RXD. (b) Three-dimensional plot of SSRX-3. (c) Three-dimensional plot
of TenB-(4, 4, 3). (d) Binary image of (a) under the adaptive threshold. (e) Binary image of (b) under the adaptive threshold. (f) Binary image of (c) under the
adaptive threshold.

RXD have generated several false alarms, but none in TenB-
(4, 4, 3). The main reasons for these phenomena may be
twofold: 1) TenB-(4, 4, 3) eliminates the background informa-
tion in both the spectral and spatial domains before detecting,
which may suppress more energy of background than SSRX-
3 and RXD. The anomalies left in the remaining data are
considered as spectral–spatial anomalies lying in a unimodal
Gaussian background. As a result, they can be detected more
easily. 2) The main false alarm pixels in the results of SSRX-3
and RXD are from the interferential object in the left-bottom
corner. Although this object’s spectrum is different from the
background spectra, it owns about 50 pixels. In fact, it is too
large to be an anomalous target. In other words, the interferen-
tial object only possesses a spectral-anomaly characteristic but
not the spatial-anomaly characteristic. SSRX-3 and RXD are
the right algorithms that only exploit the spectral anomaly, so
the interferential object has been detected as anomaly. On the
other hand, TenB-(4, 4, 3) detects the object with both of the
two anomaly characteristics, so the interferential object has not
been detected as anomaly.

A quantitative comparison is reported in Fig. 21 with ROC
curves and the AUC values (listed in the brackets). A superior
detector would lie nearer the top left and own a larger AUC. The
ROC curves in Fig. 21 reveal that most of the methods perform
well for ROI-1, except for the RXD. Those detectors are not
particularly distinguishable at the low value range of detection
probability.

This phenomenon indicates that those methods perform sim-
ilarly when fewer anomalous targets are separated from the
background. Since the most separable anomalous targets are the
ones with high abundance fraction, all of the methods are able
to detect these ones easily. With higher detection probability,
which suggests that the more difficult anomalous targets (with
low abundance fraction) are separated, the ROC curves appear
different. At this time, the false alarm rate can be used as an
indicator for the separation ability of the different detection

Fig. 21. ROC curves for Hyperion data set (ROI-1).

methods. TenB lies nearer the upper left in the axis space than
the others, and it performs best at most ranges, which indi-
cates that the method detects more difficult anomalous targets,
with better separability from the backgrounds. Therefore, the
detection performance of TenB is much superior to that of the
compared methods for the ROI-1 scene. Such conclusion could
be further verified by the AUC values, where TenB provides the
highest AUC value.

3) Experiment 3—ROI-2: Likewise, for ROI-2, we first
analyze the relative reconstruction error for determining the
PC number along different modes. According to Fig. 22, we
determine the spectral PC number as two and both of the two
spatial PC numbers as four. As a result, SSRX-2 and TenB-
(4, 4, 2) are considered for anomaly detection in the following
experiments.

The tensor reconstruction results of ROI-2 are shown in
Fig. 23. The same phenomenon observed in this experiment
is that the original HSI data cube may be divided into two
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Fig. 22. Relative reconstruction error curves of ROI-2. (a) TenB method along the first mode. (b) TenB method along the second mode. (c) TenB method along
the third mode and SSRX method.

Fig. 23. Tensor reconstruction results of ROI-2. (a) Three-dimensional data
cube of ROI-2. (b) Three-dimensional data cube of the XBg . (c) Three-
dimensional data cube of the XAn.

subtensors in which one indicates the main background infor-
mation (denoted as XBg) and the other indicates the anomalous
part (denoted as XAn). From Fig. 23, we can see clearly
that little anomalous information is contained in XBg , while
anomalies are salient in a single background (Gaussian-like
distribution) in XAn. This phenomenon illustrates that TenB-
(4, 4, 2) has separated background and anomalies effectively.
Furthermore, Fig. 24 has shown the Gaussian characteristic of
different data sets. It has verified that the TenB-(4,4,2) method
has got a most proximal unimodal Gaussian distribution like
background.

Detection results obtained after applying the three considered
algorithms to ROI-2 are reported in Fig. 25. The real anomalies
having been detected are labeled in red rings. In general, we
can observe that TenB-(4, 4, 2) has detected the most targets
with the fewest false alarms comparing to the RXD and SSRX-2
algorithms [see Fig. 25(d)–(f)]. From the results, we may draw
some conclusions: 1) Due to the complexity of the background,

the anomalies may be enshrouded by background information.
As a result, detection on the original data [see Fig. 25(d)] may
miss some anomalies. On the other hand, after background
elimination, this influence may be mitigated. Consequently, the
detection probability may be increased [see Fig. 25(e) and (f)].
This phenomenon proves that background elimination is pro-
pitious to anomaly detection. 2) The TenB-(4, 4, 2) method
shows superiority over SSRX-2 in anomaly detection. SSRX-2
only eliminates background information in the spectral domain.
In this case, if the spectra of anomalous targets correlate with
the background spectra, some information of anomalous targets
may be weakened when eliminating background. As a result,
the detection probability may be reduced. On the other hand,
the TenB-(4, 4, 2) method eliminates background information
in both the spectral and spatial domains. Anomalies are not only
spectrally different from background but also spatially distinct.
In this case, even if the spectra of anomalous targets correlate
with the background spectra, the spatial distribution differ-
ences between them still exist in most cases. Therefore, back-
ground and anomaly can be distinguished in the spectral–spatial
domain, and they can be separated effectively. Furthermore,
anomalies can be easily detected in the background-free data.
The TenB-(4, 4, 2) algorithm has made a noticeable improve-
ment with regard to the two contrastive algorithms in this
particular experiment.

The detection performances of the considered methods are
quantitatively compared by the ROC curves and the AUC
values reported in Fig. 26. TenB achieves a 100% detec-
tion probability at a comparatively low false alarm rate and
gives the highest AUC value. Therefore, we may conclude
that TenB is promising for detecting the anomalous targets
from ROI-2.

4) Experiment 4—ROI-3: For ROI-3, we first analyze the
relative reconstruction error for determining the PC number
along different modes. As shown in Fig. 27, we determine the
spectral PC number as two and both of the two spatial PC
numbers as five. As a result, SSRX-2 and TenB-(5, 5, 2) are
considered for anomaly detection in the following experiments.

Then, the detection performances of those methods are an-
alyzed by the ROC curves reported in Fig. 28 and the AUC
values listed in the brackets. This time, TenB is better at detect-
ing the more difficult anomalous targets than its counterparts.
The superior detection performance could be further confirmed
by the AUC values.
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Fig. 24. Histograms of the first band of different data sets. (a) Original data set. (b) XAn reconstructed by SSRX-2 for ROI-2. (c) XAn reconstructed by
TenB-(4, 4, 2) for ROI-2.

Fig. 25. Detection results for HYDICE data set. (a) Three-dimensional plot of RXD. (b) Three-dimensional plot of SSRX-2. (c) Three-dimensional plot of
TenB-(4, 4, 2). (d) Binary image of (a) under the adaptive threshold. (e) Binary image of (b) under the adaptive threshold. (f) Binary image of (c) under the
adaptive threshold.

Fig. 26. ROC curves for HYDICE data set (ROI-2).

Finally, the computation costs of all of the aforementioned
methods are also compared. The detailed results are presented
in Table III. Specifically, the A, B, and C (following TenB)

correspond to the computation costs of each step in TenB. The
algorithms are tested on a computer with an Intel Core i7-2600
CPU at 3.40 GHz and 4.0-GB RAM.

IV. CONCLUSION

In this paper, an anomaly detection algorithm based on tensor
decomposition has been developed. The proposed algorithm is
designed for detecting the targets with both spectral-anomaly
and spatial-anomaly characteristics. Experiments on four HSI
data sets have confirmed the efficiency of our method. It is
demonstrated that the proposed TenB algorithm provides su-
perior detection performance with better detection probability
and less false alarm rate over the compared anomaly detection
methods. However, the determination of three PC numbers (K1,
K2, and K3) still needs further studying, which will be the
focus of our future work.

Moreover, the Tucker decomposition treats the three modes
of HSI data equivalently. While the two spatial modes are
highly correlative, they are radically different from the spectral
mode. Hence, for HSI data processing, a new variation of the
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TABLE III
COMPUTATION COST COMPARISON OF THE ALGORITHMS FOR THE THREE HSI DATA

Fig. 27. Relative reconstruction error curves of ROI-3. (a) TenB method along the first mode. (b) TenB method along the second mode. (c) TenB method along
the third mode and SSRX method.

Fig. 28. ROC curves for ROI-3.

Tucker decomposition should be designed, in which the 3-D
structured data are considered to be decomposed into a 1-D
spectral feature and a 2-D spatial feature. This may preserve
the 2-D spatial correlations in each feature. It will be another
focus of our future work.
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