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Abstract—Transient electromagnetic interactions on con-
ductive dielectric scatterers are analyzed by solving the
Poggio–Miller–Chan–Harrington–Wu–Tsai (PMCHWT) surface
integral equation with a marching on-in-time (MOT) scheme. The
proposed scheme, unlike the previously developed ones, permits
the analysis on scatterers with multiple volumes of different
conductivity. This is achieved by maintaining an extra temporal
convolution that only depends on permittivity and conductivity of
these volumes. Its discretization and computation come at almost
no additional cost and do not change the computational com-
plexity of the resulting MOT solver. Accuracy and applicability
of the MOT-PMCHWT solver are demonstrated by numerical
examples.

Index Terms—Conductive media, dissipative media, integral
equations, lossy media, marching-on-in-time method, PMCHWT
formulation, time-domain analysis, transient analysis.

I. INTRODUCTION

T IME-DOMAIN surface integral equation (TDSIE)
solvers have been used extensively for analyzing tran-

sient scattering from highly realistic objects involving perfect
electrically conducting (PEC) surfaces, lossless dielectric
bodies, and thin wires, all of which reside in a lossless
unbounded space [1]. However, their application to lossy
dielectric and PEC scatterers residing in a lossy/dispersive
medium has been very limited [2]–[6]. This is simply due to
the fact that Green function of such a medium has a temporal
tail [7]. Consequently, computation of the convolution of the
Green function and currents becomes very costly, and the
resulting marching-on-in-time (MOT)-based TDSIE solvers
have to be accelerated using blocked fast Fourier transform
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(blocked-FFT) [3], plane-wave time domain (PWTD) [4],
and/or Prony-series [5], [6] schemes.
The first MOT scheme [2] developed for lossy dielectrics

solves four coupled TDSIEs constructed in tangential and
normal components of the fields on the interface between the
lossy scatterer and the lossless background medium. Because of
the “operator scaling” introduced in the equations to eliminate
a temporal convolution, this scheme cannot be directly applied
to scatterers with volumes of different conductivity. In [6],
an MOT scheme for solving the electric field SIE enforced
on interfaces between volumes of different conductivity is
proposed. However, this scheme suffers from the problem of
interior resonances if any one of the volumes is lossless [8].
In this letter, a more general MOT-TDSIE scheme is

proposed for characterizing transient electromagnetic inter-
actions on lossy dielectrics. The proposed scheme solves
the time-domain extension of the Poggio–Miller–Chan–Har-
rington–Wu–Tsai (PMCHWT) SIE for the tangential com-
ponents of the electric and magnetic fields on the interfaces
between dielectric volumes. The unknowns are discretized
using the Rao–Wilton–Glisson (RWG) basis functions [9] in
space and Lagrange polynomials [10] in time. Contributions
of this work are twofold: 1) the proposed MOT scheme can
directly be applied to scatterers with volumes of different
conductivity and does not have the interior resonance problem
(incase any one of the volumes is lossless) since it uses the
PMCHWT formulation; 2) the time domain PMCHWT SIE
has a convolution term that involves the complex permittivity’s
inverse Fourier transform, Green function, and charge density.
This term is discretized into a double discrete summation where
the inner summation corresponds to the convolution of the
Green function and basis functions. The multipliers in the outer
summation depend only on the conductivity and permittivity,
therefore they are precomputed per medium without intro-
ducing any significant computational burden. For unaccelerated
MOT schemes, the multipliers in the outer summation are
simply combined with the matrix entries resulting from the
convolution of the Green function and basis functions. For
FFT- or PWTD-accelerated MOT schemes [3], [4], the outer
summation is computed efficiently using blocked-FFTs [11].

II. FORMULATION

A. Time-Domain PMCHWT SIE

Let represent the total volume of a composite
scatterer consisting of number of isotropic, homogeneous,
and conductive regions. Volume, permittivity, permeability, and
conductivity of these regions are denoted by , , , and
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, respectively. The surface of interface between regions
and is represented by , , , and

is the unit normal vector on pointing toward .
Note that and . Let
and denote the incident electric and magnetic fields
due to a source located in . It is assumed that and

are zero , and band-limited to .
Upon excitation, equivalent electric and magnetic current den-
sities and are induced on . Note that

and . PM-
CHWT SIE is obtained using surface equivalence principles and
boundary conditions [12]

(1)

(2)

The integral operators , , and are

(3)

(4)

(5)

where

(6)

(7)

Here, is the Green function of the unbounded medium
with the same material properties as , is the dis-
tance between the observer and source points and , and
and denote the temporal derivative and convolution, respec-
tively. is computed using [7]

(8)

where , is the speed of light,

, , is the first-order modi-

fied Bessel function of the first kind, is the Dirac delta func-
tion, and is the unit step function. In (3), is obtained
analytically using inverse Fourier transform as

(9)

Several observations about the time-domain PMCHWT SIE
in (1) and (2) are in order.
1) Summations over indices and represent the contribu-
tion to the scattered electric and magnetic fields evaluated
on from the currents induced on and sur-
rounding and , respectively.

2) Equations (1) and (2) are “scaled” with to eliminate a
time integral that would be present in the operator . It
should be noted here that unlike the scaling factor
used in SIEs formulated in [2] and [3], this operation does
not limit the applicability of (1) and (2) to volumes with
the same conductivity.

3) Discretization of in (3) requires
discretization of two convolutions applied back to back.

4) If , then and
. Additionally, last terms in (3) and (4) vanish

since and . Consequently, the time-do-
main PMCHWT SIE in (1) and (2) is reduced to that
in [13].

B. Discretization

MOT Scheme: Equivalent surface current densities are
expanded using RWG functions [9] in space, where
refers to the index of and is the index of the basis

functions on , and shifted Lagrange interpolation functions
[10] in time

(10)

(11)

Here, and are the unknown coefficients, is the
time-step size, and and are the numbers of spatial basis
functions on and time-steps, respectively. Inserting (10) and
(11) into (1) and (2) and testing the resulting equations with

, , , result
in a system of equations

(12)

(13)

where

(14)
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(15)

(16)

(17)

(18)

, is the support
of the testing function , and for . Equa-
tions (12) and (13) are brought into a form that can be solved
using the well-known MOT scheme [13]

(19)

where and are vectors storing the unknown coeffi-
cients and tested fields at time-step and are the
MOT matrices. Here, , and and
are constructed by combining the vector and matrix elements in
(14)–(15) and (16)–(18), respectively.
Convolutions: The scheme described above requires two

types of convolutions to be computed at at the testing
points.
1) Convolutions of with and

(i.e., and
). Methods to efficiently com-

pute these convolutions are proposed in [5] and [6] and
are not described here.

2) Convolution of with
(i.e., ). The method to
compute this convolution is one of the contributions of
this work and is described next.

This method represents

(20)

in terms of [type-1 convolu-
tion], which can be computed efficiently using existing
methods [5], [6]. To this end, first, the auxiliary function

is approximated using

(21)

where are

(22)

Here, and are the support and order of , re-
spectively. In (22), notation representing is changed

to because they depend only on . Note that
for . Inserting (21) into (20) yields

(23)

This clearly shows that the computation of type-2 convolution
is reduced to that of type-1

convolution . Finally, contribution
from fully tested to is ex-
pressed as

(24)

Comments: Several comments about the discretization
scheme described above are in order.
1) Convolution in (22) depends only on and , therefore

are computed and stored per volume.
2) The cost of evaluating is negligible when compared
to that of type-1 convolutions. For unaccelerated MOT
schemes, the discrete sum in (24) is directly incorporated
into the MOT matrices in (19) with almost no addi-
tional cost on computing . The cost of time marching
stays exactly the same.

3) For FFT or PWTD-accelerated MOT schemes [3], [4], the
discrete summation that is present on
the right-hand side of (19) can be computed efficiently
during time marching using blocked-FFTs [11].

III. NUMERICAL RESULTS

In this section, the accuracy and the applicability of the pro-
posed MOT-PMCHWT solver are demonstrated via analysis
of transient scattering from dielectric objects residing in free
space. In all examples, the electric field of the incident plane
wave is given by , where

is a Gaussian pulse with
modulation frequency , duration , bandwidth

, and delay . Excitation exists only in free space
denoted as dielectric volume with .
The first example is a layered sphere with inner and outer

radius of 0.5 m. The relative permittivity and conductivity in the
core and layer are 1.5 and 0.003 S/m and 1.3 and 0.001 S/m. For
this simulation, MHz, MHz, ,

, , and ns. Fig. 1 plots the
coefficients of two basis functions approximating electric and
magnetic current densities. Results are stable for the duration of
simulation. Fig. 2 compares radar cross section (RCS) results
obtained from the MOT solution for and
at 50 and 150 MHz to those obtained using Mie series. Results
agree very well.
The second example is a six-layer Luneburg lens [14]. Thick-

nesses, permittivities, and conductivities of the layers (from
inner to outer) are mm,
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Fig. 1. Coefficients of two basis functions approximating electric and magnetic
current densities.

Fig. 2. RCS obtained from the MOT and Mie-series solutions for and
at 50 and 150 MHz.

Fig. 3. RCS obtained from the MOT and FD-VIE solutions for and
at 60 and 100 GHz.

, and
S/m, respectively. For this simulation,

GHz, GHz, , , ,
and ps. Fig. 3 compares RCS results obtained
from the MOT and frequency-domain volume integral equation
(FD-VIE) solutions for and at 60 and
100 GHz. Results agree very well.

IV. CONCLUSION

An MOT scheme, which solves the time-domain PMCHWT
SIE for analyzing transient electromagnetic wave interactions
on conductive dielectric scatterers, is described. The resulting
MOT-PMCHWT solver, unlike previously developed schemes,
allows for scatterers with multiple volumes of different conduc-
tivity with almost no increase in the computational cost. The
accuracy and applicability of the solver is demonstrated by nu-
merical examples.
Development of an MOT-PMCHWT solver for more general

dispersive dielectric scatterers is underway.

APPENDIX

Derivative of with respect to is needed in (17).
This is evaluated using

(25)

where is the derivative of Dirac delta function and
the zeroth-order modified Bessel function of the first kind.
For [15], the integral in (22) is given by

(26)

Here, , , and
.
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