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Abstract—In recent years, the most important paradigm in 
online display advertising is real-time bidding (RTB). It allows 
advertisers to buy individual ad impressions through real-time 
auctions, to obtain maximum revenue. However, the existing 
strategies usually bid an ad impression independently, ignoring 
the impacts of each bid on the overall revenue during the whole 
ad delivery period. Thus, the recent research suggests that using 
the reinforcement learning (RL) framework to learn the optimal 
bidding strategy in RTB, based on both the immediate and future 
rewards. In this paper, we formulate budget constrained bidding 
as a model-free reinforcement learning problem, where the state 
space is presented by the impressions’ feature parameters and 
the auction information, while an action is to set the bidding 
price. Different from the prior value-based model-free work, 
which suffers from the convergence problem, we learn the opti-
mal bidding strategy by employing the policy gradient model.
Additionally, we design four reward functions according to dif-
ferent auction results and user feedback to the learned bidding 
strategy more in line with the optimization objectives. We evalu-
ate the performance of the proposed bidding strategy based on a 
real-world dataset, and the experimental results have demon-
strated the superior performance and high efficiency compared 
to state-of-the-art methods. 

Keywords—Real-Time Bidding, Bidding Strategy, Reinforce-
ment Learning 

I. INTRODUCTION

Real-time Bidding (RTB) [1,2] has been the most important 
paradigm in online display advertising since 2011, which 
provides an open and transparent channel for publishers and 
advertisers to sell and buy ad impressions automatically in 
real-time. As a new business model of the online advertising 
market, RTB is different from traditional sponsored search or 
contextual advertising. It allows advertisers to set a bid price 
for each ad impression in real-time. In RTB display advertising, 
there are usually four platforms, namely ad exchange (ADX),
demand-side platform (DSP), supply-side platform (SSP) and 
data management platform (DMP), shown as in Fig.1. Here, 
the ADX combines multiple ad networks together and holds 
auctions to determine which campaigns win the impressions;
the DSP serves advertisers by helping manage their budgets 
and bid for each impression; the SSP works as the agency of 
publishers by selling impressions; and the DMP collects user 
data and sells it anonymously to the DSP, SSP, ADX and
sometimes to advertisers directly in real-time bidding (RTB) 
for better matching between ads and users [3]. 

In Fig.1, we present the process of how an impression is 
auctioned. In detail, an ad impression is created when a user 
visits a webpage, and an ad request will be immediately sent by 
the SSP to the ADX. Meanwhile, a bid request is published by 
the ADX for the connected DSPs. Then the DSPs generate 

different bid prices based on the user features generating from 
the DMPs and webpage information corresponding to this bid 
request to the ADX. After that, the ADX determines the winner 
according to the generalized second pricing (GSP) mechanism 
[4]. Finally, the winner pays for the impression and its ad will 
be displayed to the online user through the webpage (app). The 
entire process will be completed in 10-100 milliseconds. More 
details of RTB are given in [5]. 
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Fig. 1. The general process of an ad delivery in RTB 

In RTB, the DSP is treated as an agent of advertisers. It 
helps the advertisers spend the ad campaigns’ budgets on the 
most high-quality ad impressions to obtain more positive user 
feedback, such as clicks or conversions [19]. Thus, we consider 
that one of the fundamental problems is to capture those 
valuable ad impressions in real-time. The solution to this 
problem is called as a bidding strategy in the DSP, which 
calculate the bid price for each impression to enable advertisers 
to achieve their optimization goals. The existing bidding 
strategies are based on the evaluation of the impression to the 
ad campaign, such as the predicted click-through rate (pCTR) 
and the predicted conversion rate (pCVR). There is a common 
issue that they consider the bid decision as a static optimization 
problem of treating the value of each impression independently. 
However, such a static optimal strategy may not work well 
because of the dynamic characteristics of the RTB market. For 
example, the DSP cannot predict whether the impressions 
which may lead to the positive feedback will arrive before the 
budget runs out. As such, each bid is strategically correlated by 
the constrained budget and the overall effectiveness of the 
campaign (e.g., the rewards from generated clicks), and the 
dynamics of the RTB environment [5]. Fortunately, 
reinforcement learning (RL) is a promising solution for the 
above problem. By RL, we model the bidding strategy as a 
sequentially dynamic interactive process, so that the budget of 
a campaign can be dynamically allocated across all the 
available impressions based on both the immediate and 
long-term future rewards. 

In this paper, we propose an intelligent bidding strategy by 
leveraging policy-based model-free reinforcement learning 
framework. In our approach, a bidding agent is designed to 
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decide the bid prices sequentially for each matched impression.
Pointedly, when the agent receives a bid request, it first 
observes the current state and then generates the corresponding 
action (bid price) by a deep neural network (DNN). After an 
auction, the agent will obtain different rewards from the 
environment according to different auction results and user 
feedback. Here, the ad campaign’s information (such as the 
remaining budget and the life span) and the impression’s 
feature vectors are regarded as the state; the action is defined as 
a bid price; and the reward takes into account both cost and 
benefit. At last, we adopt the policy gradient algorithm to 
maximize the cumulative revenue of an ad campaign to 
approximate the optimal bidding strategy. Our method is quite 
different from the existing RL-based bidding strategies, most 
of which adopt value-based methods (such as Q-Learning [15],
Sarsa [17], and Deep Q Network [16]). The main contributions 
of this paper are summarized as follows:  

We present a policy-based model-free RL approach to 
learn the bidding strategy in RTB for the first time, which 
significantly improves the convergence and efficiency,
compared with other approaches adopting value-based RL;
We design four reward functions according to the different 
auction results and user feedback, which guide the bidding
agent to learn the optimal bidding strategy under budget 
constraints;
We conduct the experiments on a public dataset, and the 
results verify the effectiveness of the proposed RL frame-
work for learning the optimal bidding policy.
The rest of this paper is organized as follows. Section II

introduces related work. Section III and IV define and detail 
our proposed RL-based bidding strategy. The experimental 
setting and results are presented and analyzed in Section V.
Finally, we conclude our work in Section VI.  

II. RELATED WORK

As mentioned in Section I, the bidding strategy is crucial 
for advertisers to maximize their budget cost efficiency of each 
ad campaign. The authors in [4] proved that truthful bidding 
would obtain the optimal revenue in the second-price auctions;
but it is hard to implement in a real auction environment. The 
linear bidding [6] is widely practiced in many real-world RTB 
systems. However, it cannot maximize the revenue of an ad 
campaign by the linear bidding strategy, so the authors in [7] 
proposed an optimal bidding strategy with the non-linear form 
which is better than the linear one under variant budget 
constraints. Unfortunately, both the linear and the non-linear 
bidding strategies, optimize the bidding as a static process and 
bid for each impression independently. They set the bid price 
for each impression only based on its evaluation (usually, 
pCTR), not considering the competition degree of the auction 
market and the available budget in the new ad delivery period.

In [5], the bidding decision process is formulated as a 
Markov Decision Process (MDP) and generates a bid price by 
a dynamic programming algorithm. However, the model-based 
RL approaches such as [5] require the explicit state transition 
matrix; but in practice, the arrival of impressions is episodic, so 
the matrix is difficult to represent mathematically. So the RTB 
should be considered as a model-free environment. The authors 
in [8] proposed a new approach for budget-constrained bidding 
by leveraging model-free RL, where the bidding problem is 

formulated as a parameter control problem based on the linear 
bidding equation. However, the value-based model-free RL 
algorithms may have convergence issues in practice and all 
have shown unable to converge to any policy for simple MPDs 
and simple function approximator [9,10]. Besides, the optimal 
policy is to select different actions with specific probabilities 
rather than deterministic policies that output by the value-based 
approach [11]. On the other hand, policy gradient methods can 
theoretically guarantee better convergence properties and keep 
also effective in high-dimensional or continuous action spaces 
[11]. In this paper, we adopt a policy gradient approach that is 
different from [5, 8] to solve the problem that the value-based 
RL cannot easily converge to the optimal strategy. Also, we do 
many experiments under different budget constraints and the 
results demonstrate the effectiveness of our method.  

III. PROBLEM DEFINITION

In this section, we will formulate the problem of real-time 
bidding strategy in the reinforcement learning framework and 
describe the four reward functions that we propose in detail.  

A. Bidding based on Reinforcement Learning
Reinforcement learning is an effective solution to the finite 

Markov Decision Process , , ,S A P R . S and A represent states 
and actions respectively, and the state transition matrix and 
reward are given by P and R . The interaction process between 
the bidding agent and environment is summarized as follows: 
the agent observes state ts from the environment and takes 
action ta according to strategy in each discrete time step

1,2,...,Tt (where an impression corresponds to a time step in 
this paper), then the environment returns the reward tr to the 
agent, and the agent observes the next state 1ts . Because the 
time is limited, MDP will terminate afterT time steps (or after 
the budget are exhausted). Finally, the goal of the agent is to 
maximize the cumulative discount reward, defined as 

1
1

, [0,1]T t
tt

R r

where tr is the immediate reward of state transition 1t ts s ,
and =1 because we consider bidding in RTB is an episodic 
episode. The overall process is shown in Fig. 2 below.  g
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Execute actions 

Return reward

ts 1ts2s1s

ta

State 
Transaction
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Fig. 2. Markov decision process 

For our method, the main concepts are as follows
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State s : , , ,s b t aucttauct represents a state which contains 
the available ratio of the budget b , the remained ration of the 
expected number of impressions t in the ad delivery period, the 
predicted click-through rate of each impression, and auctauct is 
the impression’s related feature vectors which generated by 
Factorization Machine (FM) model [12]; 

Action a : the agent’s bid price for each ad impression, 
= 1,2,3...,300ta A ; 

Reward r : immediate revenue from the transition 
+1t ts s , such as clicks or conversions. In our work, we get 

the revenue from four reward functions below; 
Episode ep : in this paper, we treat an ad campaign’s

delivery period as an episode.  

B. Reward Functions
Adhering to the principle of “reward for merit, punishment 

for error.” We design four reward functions according to 
different auction results and user feedback: winning and losing 
impressions which may lead to clicks; winning and losing 
impressions which may not lead to clicks; so as to the learned 
bidding strategy more in line with the optimization goals. It is 
worth noting that our reward functions are updated in real-time 
on the impression level--the corresponding reward is generated 
according to the user feedback and the auction result of each 
impression.  

Our reward functions are logically defined as (1):  

| ,win clk t t treward E r s a (1) 

where the subscript of the reward is indicated by win clk ,
win represents winning or not, and clk represents whether the 
impression is clicked.  

1) Winning the impression that leads to a click: When the 
t-th impression arrives, (2) describes the reward degree of the 
agent for capturing the high-quality impression that leads to a 
click. Where tm is the impression’s market price, tr is the 
revenue for the impression’s true value [3], and we denote

tpCTR the t-th impression’s predicted click-through rate. 
CPC denotes cost per click. This reward function shows the 
positive feedback for the agent. 

2

1 1 1- t t
t t

t

t t

a m
reward r m

a

r pCTR CPC

 (2) 

2) Winning the impression that may not be clicked: If the 
agent allocate the budget on the low-quality impression, it will 
be punished. Equation (3) shows the punishment for the agent. 
Where punishWinRate is the penalty factor, in the offline 
experiment, it is set to indicate the penalty degree of the agent 
for capturing worthless impressions according to the ratio of 
the remaining real clicks remainClks in the historical data and 
the available budget remainBudget in the episode. 

1 0 - *treward m punishWinRate
remainClks

punishWinRate
remainBudgets

 (3) 

3) Losing the impression that leads to a click: If the agent 
loses the impression that may be clicked, it will get the 
punishment shown in (4), due to the loss of the potential 
revenue. Where punishNoWinRate is set to indicate the 
penalty degree of the agent for the ignoring of high-quality 
impressions with the value tr . Moreover, it is related to the 
number of both not-winning impressions withClkNoWinAucs
that maybe clicked and all impressions withClkAucs that lead 
to clicks, in real-time. 

0 1 -

1

trreward
punishNoWinRate

withClkNoWinAucs
punishNoWinRate

withClkAucs

 (4) 

4) Losing the impression that may not be clicked: If the 
agent loses the impression that not leading to a click, it will 
get the positive feedback from the reward function in (5).

0 0

1

baseEncourage
reward

encourageRate
withNoClkNoWinAucs

encourageRate
withNoClkAucs

 (5) 

For the agent, allocating the budget to the low-quality ad 
impressions is ineffectively to obtain long-term revenue. Thus, 
we introduce 0 0reward to guide the agent to learn the optimal 
strategy. Since the budget is not wasted for the low-quality 
impression, we take the market price tm as the basic reward 
baseEncourage . The reward is described as encourageRate
according to the number of not-winning impressions
withNoClkNoWinAucs that maybe not clicked and all 
impressions withNoClkAucs that not leading to clicks, in 
real-time.  

IV. REINFORCEMTN LEARNING TO INTELLIGENTLY BID

In this section, we will introduce in detail the proposed 
Reinforcement Learning to Intelligently Bid framework, called 
RLIB. Our framework is built on top of REINFORCE [13], 
where the action selection policy is represented by a neural 
network whose input is a representation of the state ts , whose 

output is an action selection policy ;t ta s , and whose 
weights are the policy parameters . In practice, a state-action 
sequence 1 1 2 1, , ... , ,T T Ts a s s a s could be observed when 
the agent interacts with the episodic environment. And the 
agent’s goal is to obtain an optimal policy * shown in (6) 
which can maximize the cumulative discount reward.
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*
(

-1
) 1

; arg max T t
tt

E r (6)

Where ( ; ) is the occurrence probability of the state action 
sequence . According to MDP, it is defined as (7):

1 1 1

1 1
1

; = , ,...,s , , ;

= ; ,

T T T

T

t t t t t
t

p s a a s

p s a s p s s a
(7)

At each time step t , the agent observes the state ts upon the 
probability distribution tp s and determines its bid price ta ,
then it observes the next state 1ts according to the state 
transition probability distribution 1 | ,t t tp s s a . In general, we 

mark -1
1

T t
tt

r as r , which represents the cumulative 
discount reward for the state-action sequence and denote the 
optimal objective function as (8):

( ; )( ) [ ( )] ( ) ( ; )J E r r d (8)

Next, we consider how to change the probability 
distribution of the policy ;t ta s by adjusting the parame-

ters , resulting in the improvement of r . Unfortunately, 

the explicit functions of tp s and 1 | ,t t tp s s a are typically 
unknown, due to the dynamics of the RTB environment. Here, 
we present a mathematical deduction shown in (9) for the 
gradient J of the optimal objective function with respect 
to the policy parameters . And it does not involve the 
functions of tp s and 1 | ,t t tp s s a .

(

1);

)

(

;

;;  = ;
;

              = ; log ; = log ;

            

(

 

)( ) = ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) [ ( ) (

 = log log ;

        

)]

[ ( ( ) ( )

                      

T
t t tt

J r d r d

r d E r

E p s a s

-1
( ) 1

1

; 1

1( )) ( )]

              = [(

log ,

lo ( ]g ; ) )T T t
ti t

T
t t tt

t t

p s s a r

E a s r

(9)

However, in the model-free environment, because the 
function of distribution is unknown, it is impossible to do the 
full expansion shown in (9). Only by performing actions in the 
environment, can we observe the state transition and obtain 
the reward. So inspired by the K-armed bandit [18], an 
alternative strategy is to sample multiple times and then 
calculate the average cumulative reward as an approximation 
of the expected one, which is called the Monte Carlo Method 
[13]. Equation (9) can be rewritten as (10):

,
-1

,1 1 1,log |1 ;N T T t
i ti i i ti t ta

N
sJ r (10)

where N is the sample times. So based on (10), the policy 
parameters are updated by performing the gradient-ascent 
algorithm step on J iteratively and gradually 

approximating the optimal policy * ;t ta s . Equation (11) 
shows the update process of parameters .

1
1

+ log , ;t k
k t tk

r s a (11)

Here is a positive-definite step size. If the above formula 
can be achieved, then can usually be assured to converge to 
the optimal policy. Due to the space limitation, we omit the 
proof, more details can be found in [13].

The agent obtains revenue by interacting with the RTB 
bidding environment. First, the agent observes a state ts from 
the environment and then based on the parametric policy

;t ta s , the agent chooses an action ta upon the state ts .
After completing the bidding process, reward functions we 
design return reward tr , and the agent observes the next state

1ts from the environment. Finally, the agent obtains an epi-
sodic sequence from the environment, and then updates by 
performing a gradient ascent according to the cumulative dis-
count reward 1

1

t k
kk

r and corresponding gradient

log ;t ta s for every state-action ,t ts a . Algorithm 1
shows the complete RLIB framework.

Algorithm 1 Reinforcement Learning to Intelligently Bid
1: Initialize episode numbers E
2: Initialize auction numbers T
3: Initialize learning rate 
4: Initialize weights of ;t ta s

5: for 1episode to E do
6:    for 1t to T do
7:        Observe state ts
8:        If budget of 1 0ts , then break

9:        Get action ta from ;t ta s

10:       RL agent executes ta in the environment 
11:       observe state 1ts and get reward tr from

reward functions
12:    end for
13:    Calculate -1

1

T t
tt

r by current episode’s sequence

1 1 1 2 1, , , ... , , ,T T T Ts a r s s a r s
14:    for 1t to T do
15:        1

1
+ log ;t k

k t tk
r a s

16:    end for
17: end for
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V. EVALUATION

A. Dataset
Our dataset is published by iPinYou1, one of the leading 

DSP companies in the online advertising industry. For each 
impression, the bid logs contain the information of the user, 
advertiser, publisher, and the context. Also, the impression and 
click logs provide the info of bid price, paying the (market) 
price, user feedbacks (e.g., clicks), and whether the advertiser 
wins the auction. More details of the dataset can be found in 
[14]. In our experiments, we use the data of 2 days from 
2013/06/06 and 2013/06/07 that the first day treated as the 
training set and the other treated as the testing set.  

B. Evaluation Metrics and Experimental Setup
1) Evaluation metrics: The main objective of the agent is 

to optimize the KPI of ad campaigns under budget constraints 
(such as number of clicks, number of conversions or profits). 
In our experiment, we use the number of clicks we get as KPI. 
Also, we analyze other metrics, such as Cost-per-Click (CPC).

2) Evaluation process: The historical testing set contains a 
list of records. We consider that the arrival of impression is an 
episodic episode. Given the budget and bidding strategy, when 
a bidding request (a record) arrives, our bidding agent will 
generate a bid price in real-time according to the relevant 
features of the bidding request. If the bid price is higher or 
equal to the impression’s market price, DSP will win the 
auction, then use the market price as the cost and get user 
clicks as the feedback, and finally update the remaining 
expected auction numbers and budget.  

3) Budget constraints: if we set the budget to be the same 
as the original total cost in the testing logs, then just merely 
bidding as high as possible for each impression will exactly 
run out the budget and get all clicks [7]. In our work, we test 
KPI according to various budget constraints and run 
evaluation tests separately. Finally, we use 1/2, 1/4, 1/8, 1/16 
of the original total cost in the test logs as the budget.  

4) Hyper-parameter setting: we provide some key 
hyper-parameter settings to facilitate the implementation of 
our method, as shown in table I. In RLIB, we adopt a fully 
connected neural network as the action selection policy 

;t ta s , which contains 100 nodes for the hidden layer 
and the learning rate used by the gradient ascent algorithm is 
set to 0.0001. It is worth noting that for all the baseline 
bidding strategies, the hyperparameter settings and network 
structure provided by the corresponding papers are employed. 

TABLE I. HYPER-PARAMETER SETTING

Hyper-parameter Description

0.0001 The learning rate used by gradient ascent

300(cent) Cost per click

Tanh The activation function of hidden layers

100 Number of neurons in fully connective layer

1 iPinYou Dataset website: http://data.computational-advertising.org/

C. Baseline methods
In the experiment, we will compare the baselines with our 

proposed strategy. During the experiment, the training data is 
used to adjust the parameters of each bidding strategy (all 
bidding strategies use the same prediction model (FM) to 
predict the click-through rate for each impression). The 
baseline methods in our experiments include: 

1) Deep Reinforcement learning to bid(DRLB): a 
budget-constrained bidding strategy by leveraging value-based 
model-free reinforcement learning [8].  

2) Reinforcement learning to Intelligently bid(RLIB): a
policy-based model-free reinforcement learning bidding 
strategy under budget constraints, which we proposed with 
four reward functions. 

3) Reinforcement learning to bid with immediate reward 
(RLBIR): to reflect the performance of the four reward 
functions we designed, we conduct a comparative experiment 
that set tr in Algorithm 1 as the immediate reward (i.e., click).  

D. Offline Evaluation
In this subsection, we conduct experiments on a public 

real-world dataset iPinYou and evaluate the performance of 
our proposed Reinforcement Learning to Intelligently Bid
framework by comparing with two state-of-the-art baselines. 
Also, to analyze the performance comparison under different 
budget constraints, we set the budget as 1/16, 1/8, 1/4, and 1/2 
of the original total cost in history, respectively.  
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Fig. 3. Performance comparation with CPC 

Fig. 3 shows the CPC values of the three bidding strategies 
under different budget constraints. We observe that the CPC of 
each bidding strategy increases as the budget increases. This is 
because when the budget is low, the optimal bidding strategy 
will be more inclined to push the budget on the impressions 
with the low market prices; when the budget is higher, the 
budget will be allocated on more impressions with high quali-
ty but relatively high market prices, which results in the higher 
each campaign’s CPC. Among all bidding strategies in the 
experiments, our method is able to obtain the lowest CPC, 
followed by RLBIR, and the highest is DRLB. And the results 
show that the policy-based solution is better than the tradi-
tional solution based on the value function in RTB.

Fig. 4 shows the total clicks for each bidding strategy un-
der different budget constraints. We can observe that our 
method gets the highest number of clicks, and while we cap-
ture fewer clicks as the budget decreases, it is consistently 
superior to the other two baseline strategies. The performance 
comparison of total clicks and CPC under different budget 
constraints are reported in table II. 
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TABLE II. PERFORMANCE COMPARISON AMONG DIFFERENT BIDDING STRATIGES (BUDGET = 30228554) 

RLIB DRLB RLBIR
Para Bids Imps Clicks CPC(cent) Bids Imps Clicks CPC(cent) Bids Imps Clicks CPC(cent)
1/2 317668 293024 165 91.60 235235 234850 138 109.52 353565 288045 158 95.66
1/4 154914 142747 85 88.91 119453 115977 72 104.96 169199 141375 80 94.46
1/8 76963 71684 49 77.11 60394 59884 42 89.97 83995 71031 42 89.97

1/16 39160 36633 24 78.72 31687 31248 23 82.14 42431 36278 24 78.72
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VI. CONCLUSION

As the most critical component in DSP, the bidding 
strategy has always been a hot topic in the field of online 
advertising. In this paper, we propose an intelligent bidding 
strategy based on a policy-based model-free RL framework, to 
help ad campaign determine the bid prices of all available 
impressions. First, we formulate the bidding problem as a 
Markov Decision Process and then learn the optimal bidding 
policy for each campaign by using the policy gradient 
algorithm. There are two characteristics of our framework: one 
is that policy gradient algorithm is introduced to learn the 
bidding strategy, which can overcome the convergence 
problem in other reinforcement bidding learning with 
value-based methods; the other is that we design four reward 
functions for different auction results and user feedback, taking 
into account the cost and benefit. Finally, we evaluate the 
performance of the proposed bidding strategy based on a 
real-world dataset, and the experimental results have 
demonstrated the superior performance and high efficiency 
compared to the state-of-the-art method. In the future work, we
will try to deal with the problem that using reinforcement 
learning is hard to directly derive the proper impression-level 
bid price. And due to the highly dynamic environment of the 
auction market, we will try to incorporate budget management 
mechanism into the reinforcement bidding learning framework.
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