
BRUSCHETTA: An IoT Blockchain-Based
Framework for Certifying Extra Virgin Olive Oil

Supply Chain

Antonio Arena
Information Engineering dept.

University of Pisa
Pisa, Italy

antonio.arena@ing.unipi.it

Alessio Bianchini
GEOSTECH s.r.l.

Livorno, Italy

bianchini@geostech.it

Pericle Perazzo
Information Engineering dept.

University of Pisa
Pisa, Italy

pericle.perazzo@iet.unipi.it

Carlo Vallati
Information Engineering dept.

University of Pisa
Pisa, Italy

carlo.vallati@iet.unipi.it

Gianluca Dini
Information Engineering dept.

University of Pisa
Pisa, Italy

gianluca.dini@iet.unipi.it

Abstract—Urban population is expected to continuously grow
in size. The smart city concepts allows to handle the new
challenges and issues created by this growth by applying a wide
range of technologies that can provide citizens with a better
living environment. Smart agriculture will play an important
part of smart cities, as a sustainable and high quality food supply
chain is crucial to facilitate the grow of human agglomerates. In
this context, European laws imposes very strict requirements in
the food industry, in order to ensure that food provenance is
always guaranteed. Such fine-grained traceability can be only
achieved by applying state-of-the-art technologies. In this paper,
we present BRUSCHETTA, a blockchain-based application for
the traceability and the certification of the Extra Virgin Olive Oil
(EVOO) supply chain. EVOO is an emblematic food product for
Italy, but it is also one of the most falsified ones. BRUSCHETTA
provides a blockchain-based system to enforce the certification
of this product by tracing its entire supply chain: from the
plantation to the shops. The goal is to enable the final customer
to access a tamper-proof history of the product, including
the farming, harvesting, production, packaging, conservation,
and transportation processes. BRUSCHETTA leverages Internet
of Things (IoT) technologies in order to interconnect sensors
dedicated to EVOO quality control, and to let them operate on
the blockchain. We also provide a support for the correct tailoring
of the BRUSCHETTA blockchain system, and we propose a
mechanism for its dynamic auto-tuning to optimize it in case
of high loads.

Index Terms—Smart Cities, Smart Agricolture, Blockchain,
Hyperledger Fabric, Food supply chain monitoring, Performance
evaluation

I. INTRODUCTION

Due to the rapid growth of the population density in

urban cities, much higher requirements are set for munici-

pality governors to manage all aspects in urban living. Re-

cent technologies developments are offering the possibility to

revolutionizing many aspects of the cities by making them

smarter [1]. The adoption of technologies, such as the Internet

of Things (IoT), is expected to play a crucial part in improving

city functions to ensure, on one side, a sustainable growth, on

the other, to improve citizens’ living conditions [2].

Smart agriculture plays an important part in smart cities, to

create a sustainable and high quality food supply chain [3].

State-of-the-art technologies are already improving the effi-

ciency of the food production process. In order to ensure that

quality standards are satisfied, European laws imposes very

strict requirements in the food industry, which can be met only

by massively employing novel technologies [4]. Fine-grained

traceability, in particular, is imposed, in order to ensure that

complete provenance can always be certified.

In this paper, we present BRUSCHETTA, a blockchain-

based application for the traceability and the certification of

Extra Virgin Olive Oil (EVOO). EVOO is an emblematic

product for Italy, known and appreciated in the entire world.

Unfortunately, it is also one of the most falsified food products

[5]. BRUSCHETTA provides a blockchain-based system to

enforce the certification of this product by tracing the entire

process of production: from the plantation to the shops. Its

goal is to enable a final user (the one that buys the product) to

access a tamper-proof copy of the entire history of the product,

that is the farming process, harvesting, production, packaging,

conservation, and transportation, for example through its own

smartphone. BRUSCHETTA leverages IoT technologies in or-

der to interconnect sensors dedicated to EVOO quality control,

and to let them operate on the blockchain. We also provide

a support for the correct tailoring of the BRUSCHETTA

blockchain system, and we propose a mechanism for dynamic

auto-tuning of parameters that can maintain our system suit-

able for an industrial scenario, even in case of high network

loads.

173

2019 IEEE International Conference on Smart Computing (SMARTCOMP)

978-1-7281-1689-1/19/$31.00 ©2019 IEEE
DOI 10.1109/SMARTCOMP.2019.00049

The rest of the paper is organized as follows. Section II

introduces the main technological aspects of the blockchain

technology. Section III introduces the BRUSCHETTA system

model and our threat model. Section IV presents and discusses

the results of our performance evaluation of BRUSCHETTA.

Section V presents the proper tailoring of the BRUSCHETTA

blockchain system and the dynamic auto-tuning mechanism.

Finally, Section VI concludes the paper.

II. BLOCKCHAIN

A blockchain can be defined as an immutable ledger for

recording transactions, maintained within a distributed net-

work of mutually untrusted nodes. A blockchain is a list of

ordered blocks, where each block stores a variable-size list of

transactions. Nodes can generate and read transactions and/or

participate in the consensus protocol, which allows nodes to

agree on which transactions compose a block and in which

order. The nodes that participate in the consensus protocol

are called peers. The peers execute a consensus protocol to

validate transactions, group them into blocks that include a

hash value that bind each block to the preceding block. Dif-

ferent consensus protocols are possible, with different security

properties.

The first and most widely recognized application of

blockchain is the Bitcoin cryptocurrency [6], which allows

the nodes to enable digital money transfers on an untrusted

network of nodes without the financial brokering of a trusted

third party, such as a central bank. This application, like other

financial applications, use a class of blockchains called public
or permissionless. In a public blockchain virtually anyone

can participate, and every participant is anonymous. Public

blockchains typically involve a native cryptocurrency and often

use a resource-demanding consensus protocol, such as the

Proof of Work (PoW) protocol, and economic incentives for

peers to participate in such protocol.

In addition to cryptocurrency and financial applications, the

blockchain technology is promising in several other scenarios

like smart homes [7], smart grids [8], healthcare [9], smart

cities [10], and so on. However, many of these scenarios

require performance characteristics that the permissionless

blockchain technologies are unable (presently) to deliver, such

as transaction low latency and high throughput. In addition, in

many scenarios, knowing the identity of the participants is a

hard requirement, such as in the case of financial transactions

where Know-Your-Customer (KYC) and Anti-Money Laun-

dering (AML) regulations must be followed. For this purpose,

permissioned blockchains have been introduced. Permissioned

blockchains run among a set of known, identified participants.

By relying on the identities of the peers, a permissioned

blockchain can use traditional Byzantine-fault tolerant (BFT)

consensus protocols [11], [12], which do not require many

resources.

III. BRUSCHETTA SYSTEM MODEL

The EVOO supply chain involves four different parties: (i)

the farmers, which are responsible for olives farming and

Farmer
Organization

Makers
Organization

Couriers
Organization

Sellers
Organization

Farmers Makers Couriers Sellers

Hyperledger Fabric

Fig. 1. BRUSCHETTA architecture

Organization 1

...

Peer 1 Peer 2 Peer N

Orderer

Organization 2

...

Peer 1 Peer 2 Peer N

Orderer

Node 2Node 1 Node M

...
Node 2Node 1 Node M

...

Fig. 2. Hyperledger Fabric model

harvesting; (ii) the makers, which are responsible for the

transformation process from olives to EVOO, and for the

packaging process; (iii) the couriers, which are responsible for

olives and EVOO transportation; (iv) the sellers, which are the

final destination of the production process and are responsible

for EVOO distribution to final users.

In this section we present BRUSCHETTA, a blockchain-

based application for the traceability and the certification

of EVOO. The goal of BRUSCHETTA is to monitor ev-

ery production process in order to obtain critical informa-

tion for estimating the quality of the final product. We

made BRUSCHETTA publicly available on Github1. The

BRUSCHETTA architecture is illustrated in Fig. 1. As it can

be seen from the figure, BRUSCHETTA uses Hyperledger
Fabric as blockchain technology [13].

Hyperledger Fabric, or simply Fabric, is a popular, open-

source, permissioned blockchain. The key points of Fabric is

that it is highly modular and does not require a native cryp-

tocurrency to incentivise the consensus protocol executions.

Fabric natively supports smart contracts, which can be defined

as trusted distributed applications that gain their security from

the blockchain and the underlying consensus among the peers.

Fig. 2 presents the Hyperledger Fabric model. Fabric users are

grouped into two or more organizations. In every organization

we have three types of users depending on their role on

the blockchain, namely nodes, endorsing peers and orderer
nodes. Nodes are users that can only generate new transactions

and read the ledger history. Endorsing peers are users that

are responsible for verifying that a transaction follows all

the endorsing policies linked to the node that generated the

1BRUSCHETTA available at: http://bit.ly/bruschetta unipi

174

transaction. In particular, an endorsing policy is a rule that

defines the necessary and sufficient conditions for considering

valid a transaction. Finally, orderer nodes are users that are

responsible for ordering transactions, grouping them into new

blocks, and executing the consensus protocol.

Following the above mentioned conventions of Hyperledger

Fabric, users in BRUSCHETTA are grouped in four different

organizations, which respectively represent the four different

parties involved in the EVOO supply chain, as shown in

Fig. 1. Every organization owns several peer nodes and orderer

nodes in order to implement all the basic functions of Fabric.

BRUSCHETTA is enriched with several endorsing policies so

that: (i) a node belonging to an organization can not play

the role of a node belonging to another organization; (ii) a

transaction recording a product transfer between two nodes

belonging to different organizations is included in Hyperledger

Fabric when both parties agree on the quality of the product

transferred.

A. BRUSCHETTA Processes

BRUSCHETTA divides the EVOO supply chain in six

processes: (i) olives farming process, (ii) olives harvesting pro-
cess, (iii) olives transport process, (iv) olives transformation
process, (v) packaging process and (vi) oil transport process.

We designed different profiles for every process that group

critical information for the relevant process. Specifically, every

profile represents one or more transactions that are generated

by nodes and included in the Hyperledger Fabric blockchain,

so that the entire history of every process can be reconstructed

when it is required.

The main factors that can affect the EVOO quality during

the olives farming process are categorized in: (i) the weather

conditions, i.e., temperature, humidity and air pollution, (ii)

the chemical treatments on plantations of olive trees, and

(iii) the chemical composition of the fields. All this factors

are collected during the farming process by a set of sensors

deployed in every plantation, which periodically include data

in a olives farming profile.

During the olives harvesting process, instead, the critical

aspects that affect the EVOO quality are the time period in

which the olives are harvested and how long the harvested

olives are stored since the transformation process starts. More-

over, the harvesting method, i.e., if they are harvested by hand

or by using specific machines, sensibly affects the acidity of

olives and consequently the final EVOO quality [14]. In the

harvesting process data are grouped and included in a olives
harvesting profile by farmers.

The olives transport process, i.e., the olives transportation

from the farmers to the makers is a very critical process and

must be carefully monitored. In particular, the olives temper-

ature during the transport assumes is a critical parameter, and

it must be periodically monitored and included in a olives
transport profile by temperature sensors deployed on couriers’

vans.

The transformation process, i.e., the process in which EVOO

is made starting from olives, represents the most critical one

in the EVOO supply chain. The transformation process is

divided into six tasks, namely, de-leafing, washing, crushing,

malaxing, decanting and separation. Temperature represents

a key parameter in these tasks. All the temperature values

are collected during the transformation process by a set of

temperature sensors deployed on the makers’ factories and

included in a olives transformation profile.

The packaging process consists of bottling EVOO. It is

important to keep the temperature constant during this process

in order to preserve the characteristic of EVOO, such as colour

and scent. The temperature values collected by temperatures

sensors during the packaging process are included in a pack-
aging profile.

The temperatures still remains a key parameter in the oil

transport process for preserving EVOO characteristics. In

particular, during this process the temperature should not have

large variations. For this reason, the temperature values are

collected by temperature sensors deployed in couriers’ vans

and included in an oil transport profile.

Finally, sellers and end-users can easily retrieve the entire

supply chain of a single bottle of EVOO, by using a web

application2 which reads the blockchain transactions and re-

constructs the entire history of the EVOO.

B. Threat Model

As we have just said, the EVOO production process in-

volves multiple industrial parties with, typically, conflicting

objectives. For example, a party may be interested in claiming

false statements about its production process to take economic

advantages at the cost of poor quality of the final product. In

our scenario, we can identify a set of internal and external

threats.

From the inside, a node of the system may be interested

in degrading the reputation of another node by assuming the

victim identity and starting to transmit data that nominally

degrade the quality of the product. For example, an adversary

farmer A tries to transmit malicious olive farming profiles

for a plantation of farmer B. However, BRUSCHETTA avoid

this behaviour by using a set of implemented endorsing

policies. Another adversarial scenario is related to a malicious

entity which is interested in changing its own profiles or the

profiles of another node. Both situations are avoided by the

immutability of Hyperledger Fabric blockchain.

From the outside, an external adversary is interested in

compromising the correctness of the system, for example

by deleting, tampering or stealing data. Data tampering and

deleting are easily avoided by enforcing immutability. Data

stealing is instead avoided by securing data with encryption,

or by enforcing endorsing policies for implementing reading

permissions for the Hyperledger Fabric transactions.

IV. PERFORMANCE EVALUATION

In order to test the proposed solution a performance eval-

uation based on simulations is carried out. The analysis, in

2Web application available at http://bit.ly/bruschetta webapp

175

Transaction
Generator

Block i+1 Block i-1 Block i

Blockchain

Transactions Queue

Fig. 3. BRUSCHETTA simulation model on OMNet++

TABLE I
SIMULATION PARAMETERS

Max transactions per block N [10, 20, 50, 100, 200]
Transaction rate λ [1, 0.1, 0.01, 0.005] txs/s
Consensus algorithm execution time et [25, 50, 200, 500] ms
Maximum block generation time T 30 s

particular, evaluates the performance of BRUSCHETTA when

different settings of the Hyperledger Fabric are considered,

in order to find the proper set of values. The focus is on

measuring the time required to store on the blockchain a

new value in order to ensure that the new data is published

with a delay that makes a real deployment of BRUSCHETTA

feasible.

To this aim, a model of the BRUSCHETTA system is

implemented in OMNeT++3, a popular event-based simula-

tor written in C++ and freely available. The simulator has

been adopted for its modular design that allows a rapid and

simple definition of novel simulation scenarios leveraging a

standard set of existing modules. The BRUSCHETTA system

is modelled in OMNeT++ as shown in Fig. 3. The Hyperledger

Fabric is modeled as a M/M/1 queuing system with bulk

departures, i.e. transactions are dequeued in groups. Each

group represents a new block in the blockchain and can have

a variable number of transactions up to N (max transactions
per block). A new block is generated whenever there are

sufficient enqueued transactions to fill a block, at least N ,

or when a timer expires, which ensures that two blocks are

generated within a maximum block generation time T . In

order to model the time required for the consensus algorithm

to converge, a fixed execution time et is introduced to delay

the publication of the new block on the blockchain after its

generation. Transactions are generated by a generator module

following a Poisson process characterized by a transaction
generation rate λ.

The parameters and the corresponding values considered

in our simulations are summarized in Table I. Different

values of transactions per block, transaction generation rate

and execution time are considered. In order to measure the

performance the transaction delay is collected. The metric is

defined as the time between the generation of a transaction

and its publication on the blockchain. The transaction delay

is considered to measure the time required for the transaction

to be validated and published, thus providing an indication

whether BRUSCHETTA is sufficiently reactive to handle the

transactions in a practical implementation or not. In order to

3OMNeT++ website: https://omnetpp.org/

obtain statistically sound results, every simulation scenario is

replicated 30 times with independent random seeds. In the

following results the average transaction delay value across

different replicas are shown along with the corresponding 95-

th confidence intervals.

Fig. 4. Transaction delay vs transactions per block with different values of
execution time

Fig. 4 reports the transaction delay obtained with an increas-

ing number of transactions per block, considering different

values of the consensus algorithm execution time. For the sake

of readability the graphs show the delay up to 5s. In order to

provide full detail on the results, a complete plot of the delay

is reported in Fig. 5 and Fig. 6 for two specific configuration,

i.e. et = 50ms and et = 200ms, respectively.

Let us analyze first the results obtained with small execution

times, i.e. et = 25ms and et = 50ms. When a sustained trans-

action generation rate, i.e. λ = 100txs/s and λ = 200txs/s,

is considered, the resulting delay is significantly below T ,

meaning that the generation of a new block is always triggered

by a sufficient number of transactions enqueued.

As expected, in these scenarios the transaction delay in-

creases as N increases or as λ decreases. This can be explained

considering that a lower λ or a larger N result in a higher

queue waiting time experienced by each transaction. A lower λ
results in the generation of a lower number of transactions that,

in turn, results in a lower number of transactions enqueued

thus requiring more time to trigger the generation of a block.

Likewise larger blocks require more time to reach the number

of transactions necessary to fill the block.

This behaviour is exacerbated with λ = 1txs/s and λ =
10txs/s, which results in a delay value that rapidly increases

as N increases, reaching a delay larger than 5s with N > 50
and N > 200, respectively. In order to offer a complete view

of the results in Fig. 5 we report the results obtained with

et = 50ms with a y-scale that goes up to 20s. As can be seen

the delay grows until a maximum delay of 15s is reached,

meaning that a new block is generated every 30s when the

176

Fig. 5. Transaction delay vs transactions per block with et = 50ms

Fig. 6. Transaction delay vs transactions per block with et = 200ms

timer expires, as the transaction generation rate is not sufficient

to trigger the generation of new blocks.

A similar behaviour is observed with larger execution times,

i.e. et = 200ms and et = 500ms, and low transaction

generation rates, i.e. λ = 1tx/s and λ = 10txs/s: the

transaction delay increases up to 15s the maximum value. A

different behaviour is, instead, observed when larger execution

times, i.e. et = 200ms and et = 500ms, and high generation

rates are considered, i.e. λ = 100txs/s and λ = 200txs/s.

Specifically, the transaction delay starts from a very high value,

decreases up to a minimum, and then starts to increase again.

In order to obtain an insight on this behaviour in Fig. 6 we

report the delay with a scale up to 20s. As can be seen

the delay obtained with a very small N , i.e. below 20, is

even higher than 15s. This very high value is due to the fact

that the execution time of the consensus algorithm becomes

a bottleneck with these configurations. With small blocks

and a high transaction generation rate, blocks can be created

continuously, in other words a block is generated after another.

The system cannot register the transactions with the same rate

they arrive, consequently they are enqueued for a long time.

As N increases, the delay reduces as less blocks are created,

until a minimum delay is reached. After this minimum the

delay starts increasing again, due to the fact that transactions

TABLE II
SIMULATION PARAMETERS WITH NETWORK LOAD VARIATIONS

Max transactions per block N 10
Maximum block generation time T 30 s
Consensus algorithm execution time et 200 ms
Transaction generation rates λ [10, 40, 100] txs/s
Transaction generation rates changing time t [2500, 4000] s

Fig. 7. Average transaction delay with variable mean transaction inter-arrival
times

have to wait longer in order to reach the minimum number of

transactions required to trigger the creation of a block.

V. DYNAMIC AUTO-TUNING MECHANISM

In a business scenario, transaction delay represents a critical

performance index that may affect the entire supply chain.

Moreover, in a realistic situation, the transaction generation

rate may vary over the time and in an unpredictable way. This

is particularly true when IoT devices are involved in generating

new transactions. For this reason, a static configuration of the

Fabric blockchain may be unsuitable due to the high variability

of the incoming transactions.

In order to show the problems stemming from a static

configuration, we carried out some additional simulation ex-

periments of the BRUSCHETTA system with OMNeT++. The

parameter and the corresponding values considered in our

simulation are summarized in Table II. In particular, we took in

consideration three different values of transaction generation

rates during every simulation experiment. We started from a

low transaction rate λ = 10txs/s. Then, we switched at time

t = 2500s to a higher transaction generation rate λ = 40txs/s.

Finally, we increased λ up to 100txs/s at time t = 4000s.

Fig. 7 shows the average transaction delay during the simula-

tion experiments. As expected, the average transaction delay

remains stable with a high transaction generation rate, i.e., λ =
10txs/s. When the transaction generation rate increases to

λ = 40txs/s, the transaction delay slightly increases, reaching

a stable value equal to 8s, meaning that the blockchain is still

able to handle the incoming transactions. However, when the

177

Fig. 8. (A) Transaction delay with different auto-tuning periods P and (B)
Transaction delay with ΔN values. The starred points are the instants in
which the dynamic mechanism changes the number of max transactions per
block N .

transaction generation rate increases further to λ = 100txs/s,

the transaction delay dramatically increases, from 8s to almost

70s, in a time interval of 4s.

In order to mitigate this problem, we implemented a

dynamic mechanism that periodically monitors the network

state and automatically tunes the blockchain parameters. In

particular, our dynamic auto-tuning mechanism is periodically

executed with a fixed auto-tuning period P . It computes the

average transaction delay in the last P seconds and compares it

with the average values of the past average transaction delays.

If the actual average transaction delay value is higher than the

average of the past average transaction delays, the mechanism

increases of a fixed value ΔN the number of max transactions

per block N , so that a larger number of transactions can be

handled at the same time. Otherwise, if the actual average

transaction delay value is lower than the average of the past

average transaction delays, the mechanism decreases of a fixed

value ΔN the number of transactions per block.

The dynamic mechanism has been evaluated in OMNeT++.

We took into consideration two different scenarios in our

simulation experiments. In both scenarios, the transaction gen-

eration rate is increased following the same pattern reported

in Fig. 7. In the first scenario, we evaluated the mechanism

with different auto-tuning periods P and a fixed value ΔN
equal to 10.

Fig. 8A shows the transaction delay with different auto-

tuning periods P . As expected, with a low auto-tuning period,

i.e., P = 30s, the mechanism quickly reacts to varying net-

work conditions, keeping the transaction delay quite low. With

higher auto-tuning period values, i.e., P = 60s and P = 120s,

the mechanism reacts slowly to the transaction generation rate

increases. In particular, the maximum transactions per block

N increases twice in order to bring the transaction delay back

to reasonable values.

In the second scenario, we evaluated the mechanism with

different ΔN values, keeping the auto-tuning period P fixed

and equal to 60s. Fig. 8B shows the transaction delay with

different ΔN values. With a very low value of ΔN , i.e.,

ΔN = 2, the blockchain suffers of frequent changes of the

maximum transaction per block N when a burst of transactions

arrives, which may be unfeasible if the transaction generation

rate becomes even higher than in the considered scenario. If

case of a high value of ΔN , i.e., ΔN = 50, the blockchain

does not suffer of transaction delays when the transaction

generation rate increases. This can be explained by considering

that the queue size becomes very large when N changes at

time t = 2500s, so that the queue can easily handle a burst

of incoming transaction. However, if the max transactions

per block are too high, we could experience high transaction

delays with low transaction generation rates. This is because

the block generation is triggered only by the maximum block

generation time T .

We than propose to adopt the values P = 60s and ΔN = 10
as standard parameters for our dynamic auto-tuning mecha-

nism, as we obtained moderated transaction delay changes and

a low number of transaction per block N changes.

VI. CONCLUSIONS

In this paper, we presented BRUSCHETTA, a blockchain-

based application for the traceability and the certification of

Extra Virgin Olive Oil (EVOO). BRUSCHETTA provides a

blockchain-based system to enforce the certification of EVOO

by tracing the entire process of production: from the plantation

to the shops. The proposed BRUSCHETTA architecture allows

to collect and certify data from all the different produc-

tion phases, provided by users or sensors. The adoption of

blockchain allows final users to access a tamper-proof copy

of the entire history of the product for example from their

smartphone. In order to show that the proposed system can be

adopted in real industrial scenarios, a performance evaluation

based on simulations was carried out. Results showed that the

proposed approach can not always be suitable in real industrial

scenarios, where the transactions arrival rate may vary over the

time in an unpredictable way. For this reason, we proposed and

evaluated a mechanism for dynamic auto-tuning of blockchain

parameters in order to ensure that the information is published

in the blockchain in a timed manner.

ACKNOWLEDGEMENTS

This work was partially supported by the Italian Ministry

of Education and Research (MIUR) in the framework of the

CrossLab project (Departments of Excellence) and by the

project PRA 2018 81 ”Wearable sensor systems: personalized

analysis and data security in healthcare” funded by the Uni-

versity of Pisa.

REFERENCES

[1] T. Heo, K. Kim, H. Kim, C. Lee, J. H. Ryu, Y. T. Leem, J. A. Jun,
C. Pyo, S.-M. Yoo, and J. Ko, “Escaping from ancient rome! applications
and challenges for designing smart cities,” Transactions on Emerging
Telecommunications Technologies, vol. 25, no. 1, pp. 109–119, 2014.

178

[2] Q. Zhang, T. Huang, Y. Zhu, and M. Qiu, “A case study of sensor data
collection and analysis in smart city: Provenance in smart food supply
chain,” International Journal of Distributed Sensor Networks, vol. 9,
no. 11, p. 382132, 2013.

[3] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V. Vasilakos,
“Fog computing for sustainable smart cities: A survey,” ACM Computing
Surveys (CSUR), vol. 50, no. 3, p. 32, 2017.

[4] F. Schwägele, “Traceability from a european perspective,” Meat science,
vol. 71, no. 1, pp. 164–173, 2005.

[5] D. L. Garcia-Gonzalez and R. Aparicio, “Research in olive oil: chal-
lenges for the near future,” Journal of agricultural and food chemistry,
vol. 58, no. 24, pp. 12 569–12 577, 2010.

[6] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[7] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for

iot security and privacy: The case study of a smart home,” in 2017 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops). IEEE, 2017, pp. 618–623.

[8] E. Mengelkamp, B. Notheisen, C. Beer, D. Dauer, and C. Weinhardt, “A
blockchain-based smart grid: towards sustainable local energy markets,”
Computer Science-Research and Development, vol. 33, no. 1-2, pp. 207–
214, 2018.

[9] M. Mettler, “Blockchain technology in healthcare: The revolution starts
here,” in 2016 IEEE 18th International Conference on e-Health Net-
working, Applications and Services (Healthcom). IEEE, 2016, pp. 1–3.

[10] K. Biswas and V. Muthukkumarasamy, “Securing smart cities using
blockchain technology,” in 2016 IEEE 18th international conference on
high performance computing and communications; IEEE 14th interna-
tional conference on smart city; IEEE 2nd international conference on
data science and systems (HPCC/SmartCity/DSS). IEEE, 2016, pp.
1392–1393.

[11] C. Cachin and M. Vukolić, “Blockchain consensus protocols in the wild,”
arXiv preprint arXiv:1707.01873, 2017.

[12] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, pp. 398–461, 2002.

[13] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference.
ACM, 2018, p. 30.

[14] C. Saglam, Y. Tuna, U. Gecgel, and E. Atar, “Effects of olive harvesting
methods on oil quality,” APCBEE procedia, vol. 8, pp. 334–342, 2014.

179

