
Legal smart contracts in Ethereum Block chain:
Linking the dots

Eleanna Kafeza
Zayed University
kafeza@zu.ac.ae

Syed Juned Ali
Data Science and Analytics Centre

IIIT Hyderabad
juned.ali@research.iiit.ac.in

Irene Kafeza
Kafeza Law Office
kafeza.e@gmail.com

Haseena AlKatheeri
Zayed University

Haseena.AlKatheeri@zu.ac.ae

Abstract—Block chain technology provides a decentralized and
secure platform for executing transactions. Smart contracts in
Ethereum have been proposed as the mechanism to automate
legal contracts securely without the involvement of third parties.
Yet, there are still several issues to be resolved especially
regarding the updating of smart contracts in blockchain as well as
the use of blockchain as part of a legal smart contracts system.
In this work we propose a methodology and an architecture
for building and deploying legal contracts in the blockchain. As
the blockchain is immutable, we cannot update the code of the
smart legal contracts, but in real life applications updating of
contracts is a requirement that cannot be ignored. In this paper
we address the problem of contract update by introducing a
new versioning system that keeps track of the changes and links
the different versions using a linked list. Moreover, we propose
a system architecture where the user interface, the application
logic and the blockchain are smoothly integrated in a manner that
each part of the system contributes for producing a flexible and
transparent execution. We show the applicability of our approach
by implementing a system for the case of a rental agreement. 1

Index Terms—legal smart contracts, blockchain, smart con-
tract modification, empirical study

I. INTRODUCTION

Blockchain is becoming a disruptive technology for the

legal field. The heart of this change lies to the fact that in

blockchain traditional written rules with which people usually

comply with, are no longer determined by the paper-based

written agreements but by code in the form of smart contracts.

There are several unique characteristics in this technology that

label it as the next big thing in the law field. For example,

it allows for trust-less transactions where parties can interact

without the need of a third trusted party. As another example,

smart contracts enable the ”hard-coding” of legal contracts’

obligations thus automatically imposing enforcement. Such

property is of paramount value because it prevents possible

breach of legal contracts before it can even occur.

The problem of autonomous contracting using machine

intelligence is not new [1]. The possibility of legal smart

contracts where the contract execution will be automatically

enforced and monitor by an independent automated party has

been attractive to the business environment. The definition of

legal smart contracts was introduced by [2] where a smart

contract is defined as a computerized transaction protocol that

1This research was supported by the Research Incentive Fund (RIF) Grant
R18056 provided by Zayed University, UAE.

executes the terms of a contract. Moreover, this definition

specifies the objectives of such smart contracts being to satisfy

common contractual conditions (such as payment terms, liens,

confidentiality, and even enforcement), minimize exceptions

both malicious and accidental, and minimize the need for

trusted intermediaries. While related economic goals include

lowering fraud loss, arbitration and enforcement costs, and

other transaction costs. This definition was introduced in 1997

and there have been several attempts to use technology to

satisfy at least some of these terms. Legal XML aimed to

create standards for the electronic exchange of legal data. In

previous work [3] the authors map legal contracts modelled

as workflows that expose different views to the participants.

In some cases, there is a confusion between the term of

legal smart contracts and smart contracts as introduced in the

Ethereum platform.

Legal smart contracting creates a new broader opportunity

for business interchanges that can be transparent and faster

but at the same time, they are posing several challenges that

need yet to be addressed. Currently, smart legal contracts

can be viewed as a result of a process: legal contracts are

written in a natural language, then translated to a business

process and finally implemented by code in the blockchain.

There are several steps then need still to be done to fully

automate such a process. While at the same time, we cannot

neglect that as mentioned in [4], technology is addressing

only the technical part of the formation and the execution

of a contract. In real life, contracts are part of a complex

social network of relationships and in several cases, clauses are

left unspecified and the parties’ relationships have a dynamic

nature that requires adjustments in the agreements. In [5], the

author argues that there is a need for some mechanism that

will allow the update of the contracts. Such modification can

happen due to changes in the legal landscape for example

while at the same time it has to ensure that terms of the

contract will not change unilaterally.

In our work, we consider the above concerns about contract

modification. Although the blockchain supports the immutabil-

ity of the contract, we propose a versioning mechanism that

will allow contract modification. As already mentioned the

legal smart contract formation and execution is a process

and we need to integrate several different technologies and

application requirements at the same time. Example issues

18

2020 IEEE 36th International Conference on Data Engineering Workshops (ICDEW)

2473-3490/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDEW49219.2020.00-12

Authorized licensed use limited to: University of Warwick. Downloaded on May 23,2020 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

that need to be addressed are: a smart contract is written

in code while the parties that are doing the legal agreement

are interested to have access to the legal document as well.

An additional application layer is required that will store

the actual legal document. In Ethereum the contracts are

written in Solidity and the compiler generates the bytecode. In

this format the functions of the contract cannot be identified

therefore a JSON representation of the could provide the

functions and/or the event descriptions. The problem of the

complexity of the programming languages and the ability to

modify smart contracts has also been identified in the literature

[6]. Similarly in the survey [7], programming of smart contract

has been identified in the literature as a problem. The need for

a road map regarding the use and evaluation of technologies

in blockchain has been identified in [8] where the authors

mention that existing empirical studies are in infancy.

In everyday business life, contracts execute in a dynamic

environment that should allow for modifications. Contract

modifications need to be done in writing. A contract modifica-

tion can be Unilateral which means that the contracting officer

makes the changes or bilateral which means that both parties

are signing the changes. In our example, we have unilateral

changes that are negotiated among the parties while changes

lead to the contract modification. Several contract changes are

possible but in most cases, there are a handful of changes that

appear in most times. the contribution of our work is in several

aspects:

• we provide a system architecture that allows the user to

interact and update contracts while using the benefits of

security and transparency provided by the blockchain.

• we propose a versioning mechanism, using link lists and

data/logic separation, to handle the immutable nature of

blockchain.

• we provide a roadmap on how different technologies can

be integrated for building legal contracts applications, that

can be applied to several other application fields as well.

• we provide a prototype for a rental agreement contract

that shows the applicability of our approach.

The structure of this paper is as follows: Section II presents

the related work, SectionIII describes the system architecture

and the smart contracts modification mechanism. In Section IV

the case study of the legal agreement is described. The smart

contract lifecycle and the different feature of the legal business

application are developed. The modification scenario is also

presented. The road map for the implementation and several

important highlights are described and discussed. Finally in

Section V we are concluding and elaborate on future research

directions.

II. RELATED WORK

The problem of autonomous legal contracting has been

addressed in the literature in the past. In [1], the authors

describe a platform where agents subscribing in a given

common platform are creating and executing contracts. The

evolution of blockchain technology that enables transparency

in contract execution eliminating third parties, has provided a

new dimension to the problem of automated contracting. The

authors in [9] provide an analysis of how concepts pertinent

to legal contracts can influence certain aspects of their digital

implementation through smart contracts, as inspired by recent

developments in distributed ledger technology. They discuss

how properties of imperative and declarative languages includ-

ing the underlying architectures to support contract manage-

ment and lifecycle apply to various aspects of legal contracts.

They discuss how properties of imperative and declarative

languages including the underlying architectures to support

contract management and lifecycle apply to various aspects

of legal contracts. Declarative smart contracts can better fit

fundamental elements of legal contracts but fundamental prob-

lems can appear concerning the modification and termination

of smart contracts. A declarative language may simplify the

modification of blockchain smart contracts, but, compared to

imperative counterparts, it may fall short of expectations in

matters of computational complexity and associated costs. [9]

also conclude that declarative and imperative approaches have

the potential to complement each other for better opportunities.

Smart contracts are defined as agreements existing in the form

of software code implemented on the Blockchain platform,

which ensures the autonomy and self-executive nature of

Smart contract terms based on a predetermined set of factors.

In [10] the authors analyze legal issues associated with the

application of existing contract law provisions to so-called

Smart contracts. While in [11] the authors examine smart

contracts from the perspective of digital platforms and the

Finnish contract law. They conclude that at least in some

cases, smart contracts can create legally binding rights and

obligations to their parties.

While computer code can enforce rules more efficiently

than legal code, it also comes with a series of limitations,

mostly because it is difficult to transpose the ambiguity and

flexibility of legal rules into a formalized language which

can be interpreted by a machine. In [12] the authors discuss

the idea of ”Code is law” which refers to the idea that,

with the advent of digital technology, code has progressively

established itself as the predominant way to regulate the

behaviour of Internet users. They describe the shift from the

traditional notion of ”code is law” (i.e. code having the effect

of law) to the new conception of ”law is code” (i.e. law being

defined as code).

[13] discuss the legal applications of smart contracts. A

software protocol performs an action (releases funds, sends

information, makes a purchase, etc.) when certain conditions

are met (payment is received, the outcome of an event is

determined, etc.). The advantage of blockchain-based contracts

is that they reduce the amount of human involvement required

to create, execute and enforce a contract, thereby lowering its

cost while raising the assurance of execution and enforcement

processes.

Smart contracts are presented as a self-executing, au-

tonomous alternative to traditional contracts that require en-

forcement by court involvement. The first experiences with

smart contracts show that contracts involve more than con-

19

Authorized licensed use limited to: University of Warwick. Downloaded on May 23,2020 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. System architecture for a smart contract application

ditional execution. [14] propose a method for formalizing

contract law to make this as far as possible tractable for

incorporation in smart contracts. Contract law can be viewed

as a set of rules for resolving disputes while also protecting

legitimate interests of parties.

III. SYSTEM MODEL

A. Overview

Our objective is to build a system for the design and

execution of legal smart contracts that can be modified based

upon unilateral party requests. For the system design, we

took into consideration that programming in the blockchain

is a challenging task. Several technologies are involved and a

solid software methodology has to be in place for combining

them effectively. Currently, there is no such methodology and

building applications for blockchain is an overwhelming task

for developers and an impossible task for non-developers, dealt

in a case by case basis. Our proposal for domain-specific

applications is to base them on pre-existing templates that

can significantly contribute to the development and will help

developers to adjust or improve code while users can focus on

the application logic instead of the coding issues. Traditional

web applications are usually three-tier applications where the

presentation tier displays the web page, the business tier which

includes the business logic and the data tier that stores the

data. In blockchain applications the communications and the

demands are different. The presentation tier is still responsible

for the interaction with the user. The business tier still includes

the business logic and it is where the legal contract is defined

as a template while the data tier stores the related information.

The blockchain can be considered as another tier where the

legal contract is deployed and executed.

When designing blockchain applications there is a choice

regarding what to include in each tier. A two-tier architecture

model would have the presentation and the blockchain tier.

If such a model is selected, data storage and programming

complexity issues need to be addressed. On the other hand,

using a four-tier approach, the complexity of hardcoding the

whole contract in the blockchain is reduced and contract

creation is moved to the business tier that allows for more

flexibility while it is easier to follow and update applications

for the user. At the same time, the blockchain tier is used

to provide its main characteristics, transparency, security and

automated execution.

Our proposed solution provides the versioning of contracts

in the form of a doubly linked list. Each smart contract

has a previous and a next pointer that points to the next

and the previous version of the smart contract. Each version

handles different evolved requirements of a business process or

solution. For example, the base version of a rental agreement

shall require the tenant to pay rent, but an updated version of

a smart contract might require to pay and some maintenance

fee as well. The versioning helps in keeping track of evolution

history of requirements as well as allows us to switch between

versions to go back to the old requirements as well. Every new

version of a contract is deployed again over the blockchain

because of the immutability of the code of a smart contract

on the blockchain.

B. System Architecture

Figure 1 shows our proposed architecture. The business

tier includes the contract manager. The contract manager is

the module where the business logic resides. At the data tier

(database) all information necessary for the functionality of

the business logic is stored. For example, a pdf version of the

contract can be stored at the data tier. At the fourth tier is the

Ethereum Network, the blockchain where the executable form

of the contract is stored and accessed.

1) User interface: presentation tier: The user through the

application provided User Interface interacts with the contract

manager for various requests i.e. creating, modifying and

deploying a smart contract. The user interface allows for a

satisfactory user experience minimizing the complexity that

arises when dealing directly with the blockchain. For the case

of our example for the rental agreement, the user uses the web

browser to access the capabilities provided by the contract

manager.

2) Contracts Manager: business and data tier: The

blockchain module represents the Ethereum blockchain where

smart contracts are written in Solidity. Solidity is translated

to EVM which is a bytecode language that executes on the

Ethereum Virtual Machine (EVM) and an interface is created

at the same time. The interface is used to deploy the contract

using the Web3 library. When a contract is deployed, the EVM

is the machine that runs the bytecode, hence the contract gets

an address and the bytecode is pushed to the blockchain.

The contract manager handles the application logic related

and communicates with the storage to handle the necessary

information of the smart contracts. For the interaction with the

smart contracts deployed on the blockchain, the Application

Binary Interface (ABI) and the address of the smart contract

that we get after the contract is deployed needs to be provided.

3) Web3 Interface, blockchain tier: The Web3 Interface

allows us to create and deploy the smart contracts used in

our application to the blockchain tier. We use the python

20

Authorized licensed use limited to: University of Warwick. Downloaded on May 23,2020 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Linking smart contract versions

wrapper of the Javascript library web3.js to interact with the

blockchain. Moreover, another type of storage is necessary at

this tier. An example would be storage that allows creating

a content-addressable, peer-to-peer storing and sharing of

hypermedia in a distributed file system (i.e. InterPlanatary

FileSystem (IPFS)).

C. Smart contracts modification in Ethereum

Smart Contracts on Ethereum are responsible for defining

the logic of execution of the business process. One of the

main characteristics of blockchain technology is immutability.

Each transaction is permanent and cannot be changed thus

trust and integrity can be achieved. The drawback is that

the contract itself cannot be updated since any update is

considered as tampering with the information. Yet in real-

life applications and especially for legal contracts, contract

modification is a routine process. There are several different

types of contract modifications. One case is when the contract

logic changes but the data remains the same and the other case

is when several changes can happen to the contract. We are

adopting a versioning system regarding contract modification

representation and a data separation implementation approach

to allow for efficient contract logic modification.

Fig. 3. A Minimal Data Storage Contract

1) Data and logic separation: Since we are interested to

provide a flexible mechanism for updating not only the data but

the logic of the contract as well, we need to apply a separation

principle where the data and the contract logic can change

independently. For any contract, we consider the change in

the functional logic of the smart contract as an update in the

smart contract. In several cases, the logic of execution changes

but the data remains the same. Therefore, we need to provide

a common source of data that can be used by several different

version of contracts where the logic of execution is the only

modification. We address this issue by creating a common

smart contract for the data layer. Note that a smart contract, in

this case, is not a legal contract, is a coding tool for separating

data from the rest of the contract. As a next step, we can create

multiple updated legal contracts that will import the data from

the ”data store” smart contract. Each one of them needs only

to contain the address to the data contract and thus it can use

the data. Whenever we create a new smart contract or update

a smart contract, we take the data from the data store smart

contract and set the attribute values of the updated version of

the smart contract. The updated version of the smart contract

now uses this data to execute the logic. The values are assigned

by our application layer, where we fetch the data of the storage

contract and assign values to the new updated smart contract.

Figure 3 shows a minimal data storage contract that stores

the data of the smart contracts. This smart contract maps the

address of the smart contract with a map. This map stores

the key-value pairs of the attributes and values of the smart

contract. For a new version of a smart contract to get all the

data of the previous contract, the new version should know

the address of the previous smart contract.

2) Contract versioning system: Having resolved the

data/logic separation issue, the next problem to address is

how to keep track of the contract modifications. Taking into

consideration that a contract cannot be changed, we adopt a

versioning mechanism for supporting smart contracts updates.

Figure 2 presents our versioning system. Each smart contract

is a derived contract of a base Base smart contract. The node
smart contract defines a node in a doubly-linked list. We are

interested after the creation of the initial contract to keep track

of all changed contracts. This line of contracts modification

becomes an evidence line that proves the changes. Therefore

each smart contract is derived from the node smart contract.

The links store the address of the deployed smart contracts.

The contract manager sets the next and previous pointers of

the smart contracts whenever a new version of a smart contract

is deployed.

Note that the links provide the address of the previous and

the next version of the contract. These addresses can be used

to get the data from the data storage mapping contract.

With versioning, we can get the address of the next (or

previous) version of the smart contract, but to interact with

it, we would require the ABI of the next (or previous)

smart contract. To handle this issue, we store the ABI file

mapped with the address of the smart contract in InterPlanatary

FileSystem (IPFS). We explain the versioning implementation

in a detailed manner in the case study section. InterPlanetary

File System (IPFS) is a protocol and network designed to

create a content-addressable, peer-to-peer method of storing

and sharing hypermedia in a distributed file system. In this

way, using the address we can get the ABI of the contract

from IPFS and then we can use the address and ABI to interact

with the smart contract. In this work, we use a smart contract

for storage.

IV. RENTAL AGREEMENT SMART CONTRACT

MANAGEMENT CASE STUDY

We demonstrated the application of our methodology for

designing and implementing modified legal contracts with

a case study. A rental between a landlord and a tenant

was used as the legal contract. The presentation tier is the

interaction with the user, the contract management tier handles

the rental agreement creation, execution and modification and

the contracts are deployed in the blockchain tier.

21

Authorized licensed use limited to: University of Warwick. Downloaded on May 23,2020 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

Our case shows that the business tier holds the application

logic. A legal contract that deals with the stakeholders, i.e

landlord and tenant with the clauses of the agreement between

the two parties, and with a version ability for modification

is defined at this stage. The business logic tier acts as a tool

that provides the manifestation of execution of legal contracts

translated into smart contracts. While managing the smart

contract, the application essentially manages clauses of the

legal contract.

Our application allows the user to upload and deploy mul-

tiple instances of smart contracts which are a digital manifes-

tation of legal contracts. Landlords can upload available prop-

erties and users can agree to the available contracts deployed

by the landlords. Once the user agrees to the agreement, the

application manages the transactions and clauses to validate

the legal contract. Each smart contract is linked to a pdf of the

legal contract. This allows the user to go through the contract

in the English language before confirming the agreement. Our

objective is to use the different tiers to implement different

parts of the application applying our design architecture and

to use versioning as an alternative of information update in

the blockchain.

A. Smart contract Life cycle

1) Stakeholders: A person needs to login to our application

to be able to perform actions and use our application. The

actions are user-specific so that requires the user to login.

• Landlord - The landlord can upload and deploy a contract

over the blockchain. A smart contract has user-specific

tasks. For example, only a landlord can terminate a

contract. Only a landlord can modify the contract. We

explain the modification aspect of the contract in detail

in the later sections.

• Tenant - A tenant and only the tenant can confirm the

agreement to the smart contract. Only a tenant can pay

the rent once they have confirmed the agreement to the

contract. A tenant has to confirm the agreement again if

the landlord modifies the contract.

2) Life Cycle: Life Cycle for rent payment to contract

termination

• User logs in as a landlord

• Uploading contract

• Deploying a contract

• User logs in as a tenant

• Tenant confirms the agreement to the contract and pays

the deposit as prescribed by the landlord in the legal

contract

• Tenant pays the rent and the ethers worth of rent value

are transferred from the tenant’s account to the landlord’s.

• Tenant pays the rent for next months

• Landlord can modify the legal contract and uploads new

contracts and deploys it.

• Tenant can either confirm the modified contract or can

reject it. If the tenant rejects the contract the previous

Fig. 4. Sequence of actions to deploy smart contract by landlord and pay
rent by tenant

contract is terminated, else the new modified contract is

initiated and continues to execute over the blockchain.

• The tenant can cancel the contract midway before the

prescribed period with giving a certain amount of fine.

• The landlord pays the tenant full or half deposit back

depending on the time of contract termination by the

tenant

3) Features of the application:
• 1. User Specific Dashboard for contract management

- A user can deploy multiple contracts and as the contract

progresses, the application allows the users with respec-

tive actions to take. For example, a tenant gets the option

to confirm the agreement before they have agreed to the

contract, but after the confirmation of the contract, they

get an option to pay the rent or terminate the contract.

The dashboard shows all the contracts that are currently

deployed by the user, i.e the logged-in user is the landlord

of, and also shows all the contracts that the user is a tenant

of. The dashboard also shows all the previous contracts

that were deployed and provides an option to see the

transaction history of the contract.

• Contract Modification - Our application allows for the

smart contract modification by allowing the landlord to

upload and deploy a new contract. We then link the new

modified contract as the new version of the previous

contract. Modification of the new contract could mean

22

Authorized licensed use limited to: University of Warwick. Downloaded on May 23,2020 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

TABLE I
TECHNOLOGIES USED IN OUR SOLUTION

Technology Used Purpose
Solidity Programming language to write

smart contracts
IPFS InterPlanatary File System used to

store ABI of contracts
Python Defining the Application logic of

our Decentralised Rental agree-
ment application

Web3py Python library used to interact with
Ethereum blockchain node and ex-
ecute transactions using python
code.

MetaMask Chrome extension that provides
User interface to connect to or host
an Ethereum blockchain node

Ganache Application that creates a
blockchain node on localhost
that can be used for testing
decentralised applications.

Django Python Framework to build the
web based decentralised rental
agreement application.

MySql Database used for storing data on
the Django application.

adding new clauses to the contract or changing the param-

eters like rent, the penalty for early contract termination,

contract length etc. This allows the user to deploy a

new contract as a new version of the previous contract,

keeping the previous transactions intact. For example,

say a house named H is under a contract between a

landlord L and tenant T. After the contract is deployed

a modification is required in the contract. Using our

application, a landlord can deploy a new contract as a

modification of the previous contract and the previous

transactions will be linked to the H, even though the new

contract does not have the old transactions related to the

H between L and T. We define functions in the solidity

contracts to link the various versions of the contract and

store the address of the next and previous version as an

attribute of the smart contract. The pointers of the smart

contracts are updated when a new version is deployed.

4) Technologies used and Integration: Table I mentions

all the different technologies used in our solution. The

purpose of each technology is also provided in the table.

The solidity programming language is used to write smart

contracts and IPFS is used to store data related to rental

agreements on the application. We use the python pro-

gramming language to model business logic. The python

application provides an interface for the end-user to create

and deploy smart contracts. It also allows the user to

update the smart contract with evolving requirements,

for example modifying rent amount or adding a function

that needs to be triggered to handle a newly introduced

clause in the contract. The contract manager interacts

with the smart contracts and InterPlanatary FileSystem

(IPFS) which is used to store information required to

interact with the deployed smart contract, for example,

Application Binary Interface (ABI). The logic to store

the files on IPFS is also provided by our application

written in python. Web3py is a python library which

provides an API that provides an interface to interact

with a blockchain node. With Web3py library, contract

manager interacts with the various versions of the smart

contracts. We allow metamask as well as ganache runtime

environment for the deployment of the smart contracts.

The ganache runtime environment allows the user to test

their smart contracts and the metamask can be used by

the user in production to deploy the contract to the main

Ethereum blockchain.

Fig. 5. Base contract snippet for rental agreement

Fig. 6. Updated contract for rental agreement

23

Authorized licensed use limited to: University of Warwick. Downloaded on May 23,2020 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

B. Evolving Rental Agreement Case study: Implementation
Details

Figure 5 and Figure 6 show the base and updated contract

for rental agreement. The base contract shows the attributes

necessary for a basic rental smart contract and the logic

necessary for the functions like paying rent, confirming the

agreement and terminating the contract. The updated smart

contract involves a new function that can be used to add

functionality to the smart contract logic or the existing func-

tions can also be updated. The base contract also involves the

previous and next contract version addresses. This address is

used to fetch the data associated with the contract from the

data storage contract.

We used Django inbuilt authentication module with a modi-

fied user model. The database table definition required for our

application was -

• Contract (landlord, tenant, version, state, abi) - this table

denotes the contract with landlord, tenant attributes, the

version denotes the version of the contract which may be

different if it is a modified contract and the state denotes

the state of the contract, which may be one from active,

inactive and terminated. The active state is the one when

the version of the contract between the stakeholders is

executing and is active. The passive state is when the

current version is no longer active and a modified version

of the contract is inactive state and terminated state is

when the contract has ended. There is an attribute abi

which is application binary interface, and this allows the

application to interact with the smart contract deployed

over the blockchain.

• User(name, email, password, public key) - denotes the

user of the application. Public key is used to fetch the

balance of the user from the blockchain and also to make

a user specific dashboard.

Fig. 7. Dashboard of User for Evolving Rental Agreement Manager Web
Interface

1) Dashboard: The dashboard in Figure 7 shows a user

logged in who can upload a new contract, deploy an uploaded

contract, terminate a contract for which the logged-in user

is the landlord of, and confirm the agreement of a contract

that some other user is a landlord of. The snippet in Figure 8

shows the code that get executed to deploy a smart contract

and execute the transactions on the already deployed smart

contract.

Fig. 8. Snippet for deploying contract and executing smart contract

Fig. 9. Upload Contract Web Interface for landlord

2) Upload contract: Figure 9 shows how to upload a smart

contract. The figure shows it requires an ABI file and the

bytecode of the smart contract to upload the contract on the

application. Once uploaded, this contract can be deployed on

the blockchain.

Fig. 10. Deploying Contract Web Interface for Landlord

24

Authorized licensed use limited to: University of Warwick. Downloaded on May 23,2020 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

3) Deploy contract: Figure 10 shows the functionality that

allows the logged-in user to deploy an uploaded contract. Once

the contract is deployed over the blockchain, the application

can interact with the smart contract to execute the code in

the smart contract, which is the execution logic of the smart

contract. The execution logic encapsulates the legal clauses

that need to be followed during the execution of a smart

contract.

4) Confirm Agreement or Pay Rent: The application allows

a tenant to pay rent to the landlord of the smart contract, for

which this user confirmed the agreement. Once the rent is paid

by the tenant, the ether (Ethereum currency) gets debited from

the account of the tenant and gets credited in the account of

the landlord.

Fig. 11. Terminate or Modify Contract Web Interface for landlord

5) Terminate or Modify Contract: Figure 11 shows the

functionality that allows the landlord to terminate contract or

modify contract.

The application allows a user to modify a smart contract

by taking a new smart contract, which is the modified version

of the old smart contract and deploys the new contract. The

application also links the old smart contract with the new one,

so that all the previous transactions between the tenant and

the landlord stay intact and the tenant can see the previous

contracts.

The contract gets terminated when either the period of

contract gets over or the tenant requests to terminate the

contract before the agreed period. In case the contract is

terminated by the tenant, half of the deposit is taken as a

penalty from the tenant’s account. The code to handle the

case of timely or untimely termination is taken care of by

the solidity code.

V. CONCLUSION

In this work, we examine the legal smart contract in the

blockchain. We initially identify a set of problems that arise

when adopting blockchain as a technology to implement legal

agreements automation. Similar approaches can be followed in

other applications as well. We present an architecture that can

be followed when smart contract applications are developed

that clarifies the modules, the communication and the tech-

nology to be used to design and implement the different parts

of the smart contracts. Moreover, we propose a versioning

mechanism using linked lists for the modification of smart

contracts as well as we show how smart contracts can be used

as a tool for data and logic separation. We present a case study

of a rental agreement and we explain how such an agreement

can be designed and executed in the blockchain. We propose

the introduction of a platform for creating and handling smart

contracts that can be responsible for the business logic and

the use of blockchain for verifying transparency and security.

We have implemented a system and presented our results. For

the future work, we are examining to use more sophisticated

techniques for implementing the versioning where the already

executed part of the contract will not be able to change, as well

as to increase the level of available modification for the user.

We are also considering several other aspects for introducing

trust to the system.

REFERENCES

[1] I. Kafeza, E. Kafeza, and D. K. Chiu, “Legal issues in agents for
electronic contracting,” in Proceedings of the 38th Annual Hawaii
International Conference on System Sciences. IEEE, 2005, pp. 134a–
134a.

[2] N. Szabo, “Formalizing and securing relationships on public networks.”
1997.

[3] D. K. Chiu, K. Karlapalem, Q. Li, and E. Kafeza, “Workflow view
based e-contracts in a cross-organizational e-services environment,”
Distributed and parallel databases, vol. 12, no. 2-3, pp. 193–216, 2002.

[4] K. E. Levy, “Book-smart, not street-smart: blockchain-based smart
contracts and the social workings of law,” Engaging Science, Technology,
and Society, vol. 3, pp. 1–15, 2017.

[5] M. Raskin, “The law of smart contracts,” SSRN Electronic Journal, 2016.
[6] M. Alharby, A. Aldweesh, and A. van Moorsel, “Blockchain-based smart

contracts: A systematic mapping study of academic research (2018),” in
Proceedings of the 2018 International Conference on Cloud Computing,
Big Data and Blockchain, 2018.

[7] D. Macrinici, C. Cartofeanu, and S. Gao, “Smart contract applications
within blockchain technology: A systematic mapping study,” Telematics
and Informatics, vol. 35, no. 8, pp. 2337–2354, 2018.

[8] R. M. Parizi, A. Dehghantanha et al., “Smart contract programming
languages on blockchains: An empirical evaluation of usability and
security,” in International Conference on Blockchain. Springer, 2018,
pp. 75–91.

[9] G. Governatori, F. Idelberger, Z. Milosevic, R. Riveret, G. Sartor, and
X. Xu, “On legal contracts, imperative and declarative smart contracts,
and blockchain systems,” Artificial Intelligence and Law, vol. 26, no. 4,
pp. 377–409, 2018.

[10] A. Savelyev, “Contract law 2.0:‘smart’contracts as the beginning of the
end of classic contract law,” Information & Communications Technology
Law, vol. 26, no. 2, pp. 116–134, 2017.

[11] K. Lauslahti, J. Mattila, and T. Seppala, “Smart contracts–how will
blockchain technology affect contractual practices?” 2017.

[12] P. De Filippi and S. Hassan, “Blockchain technology as a regula-
tory technology: From code is law to law is code,” arXiv preprint
arXiv:1801.02507, 2018.

[13] S. A. Abeyratne and R. P. Monfared, “Blockchain ready manufacturing
supply chain using distributed ledger,” 2016.

[14] E. Tjong Tjin Tai, “Formalizing contract law for smart contracts,” 2017.

25

Authorized licensed use limited to: University of Warwick. Downloaded on May 23,2020 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

