

Beagle: A New Framework for Smart Contracts Taking Account of Law

Wei-Tek Tsai1,4,5,6,7, Ning Ge2, Jiaying Jiang3, Kevin Feng6, Juan He1

1Digital Society & Blockchain Laboratory, Beihang University, Beijing, China
2School of Software, Beihang University, Beijing, China

3Emory University School of Law, Atlanta, Georgia 30329, USA
4Arizona State University, Tempe, AZ 85287, USA

5Beijing Tiande Technologies, Beijing, China
6Andrew International Sandbox Institute, Qingdao, China

7IOB Laboratory, National Big Data Comprehensive Experimental Area, Guizhou, China

Abstract -- This paper presents a new Beagle
framework for Smart Contracts (SCs) taking
account of law. Different from previous SC
development or execution frameworks, this
framework takes a practical approach to
integrate law into SCs. Instead of translating
legal contracts into codes directly, this paper
proposes to treat SCs as a key component of legal
contracts, use SCs to partially automate the
executions of legal contracts, and produce legal
evidence during the process. Thus, the proposed
SC design will be significantly different from
previous SC designs, not in programming
languages to be used, but in the way SCs are
designed and executed. This Beagle framework
has five stages: SC template development from
domain analysis, formal SC model and code
development from templates, verification and
validation (V&V), SC execution, and runtime
monitoring.

1. Introduction

The SC was proposed in 1994 by Nick Szabo as a
set of promises, specified in the digital form,
including protocols within which the parties
perform on these promises [Szabo 1997]. SC has not
been widely adopted and people are still exploring
its potentials. Following the trend, this paper
proposes a new framework for smart contracts. the
new framework is unique from three aspects: legal
aspects, infrastructure aspects, and design and
execution aspects.

Legal Aspects. One of the most distinctive
features of this new framework is that it takes law
into consideration. Some of SC systems have been
developed without consideration of law, e.g.,
Hyperledger has designed such a system called
chaincode, i.e., code runs on top of a blockchain (BC).
In this way, the system is purely technical, without
any legal implications. This design is not the
direction this paper will take, instead, this paper
focuses on the integration of SC and law, using SCs
to partially automate the executions of legal
contracts, and produce valid evidence.

In fact, Hyperledger makes the right decision, a
SC without legal meaning should not be called an SC.
A SC is not a legal contract because a legal contract
requires elements that cannot be met by the current
SC technology, at least without changing the current

law. For example, Potential parties need to negotiate
contractual terms to establish a meeting of minds,
which is a substantial requirement for contract
formation. This step can hardly be fulfilled by SCs
due to their mechanical and execution
characteristics.

Another example is that, in most situations, legal
contracts require signatures on important pages,
but a SC has no place to sign. While digital signatures
are accepted on legal contracts, but currently it is
not possible to accept digital signatures by SCs.

However, SCs are still important if they interact
with legal contracts in the future to partially carry
out some legal tasks [Yu 2017a], e.g., contract
execution. Section 3 presents our approaches to this
aspect.

Infrastructure Aspects: Initially SCs have been
proposed in the 1990s without consideration of BCs,
and this SC concept remained dormant for many
years. The SC concept receives attention when BCs
such as Ethereum are deployed with SCs. Even
though the DAO event caused numerous issues
during 2016-2017, the event actually helped to push
the development of SCs. Many new projects such as
Kantara and OpenLaw have been initiated to further
research and experiment on SCs. This is a critical
aspect as a SC cannot be a valid SC if it does not run
on top of BCs; Otherwise potentially data produced
cannot be genuine. If data are not reliable, valid
evidence cannot be guaranteed [Tsai 2019]. If not
able to produce valid evidence, the SC execution is
useless from the legal point of view. Section 4
discusses our approach in this aspect.

Design and Execution Aspects: This is
commonly viewed as the SC computing aspects as
this deal with design, implementation, verification
and validation of SCs. This aspect was most
extensively covered in the literature.

These three aspects are inter-related to each
other. For example, each SC must have legal
consideration, must run on top of a BC, and must be
executable and the results can be validated. The
execution results of SCs may be submitted to an
arbitration court for the verdict.

This paper proposes a new framework Beagle
for developing SCs. The name was inspired because
Beagle a specific dog breed is often involved in law
enforcement at airport customs. Similarly, SCs are
involved in execution aspects of legal contracts. The

134

2019 IEEE International Conference on Service-Oriented System Engineering (SOSE)

978-1-7281-1442-2/19/$31.00 ©2019 IEEE
DOI 10.1109/SOSE.2019.00028

framework is unique and divides SC development
and execution into five stages:

(1) Template Production: This is the stage
where SC templates are developed.

(2) Formal SC Model and Code Development:
This is the stage where SC models and their
code are developed.

(3) Execution: This is the stage where SCs are
executed on the BC.

(4) Verification & Validation (V&V): This is
the stage where SCs are validated by users
and verified by formal verification and
testing techniques.

(5) Runtime Monitoring: This is the stage
where SC execution is being monitored to
ensure that execution follows the
constraints specified in SCs.

This is an international project with American
and Chinese participants. Emory University School
of Law and Arizona State University are US partners,
and Beihang University and other organizations are
Chinese partners.

This paper is organized as follows: Section 2
covers related work; Section 3 addresses legal
aspects of SCs; Section 4 presents the SC template
production process; Section 5 discusses SC model
and code generation from templates; Section 6
presents SC execution issues; Section 7 covers SC
verification and validation (V&V); Section 8 covers
runtime monitoring; and Section 9 concludes this
paper.

2. Related Work

This section will briefly introduce five SC
projects, followed a short evaluation.

Ethereum SCs: SCs did not get attention until
Ethereum came with programmable SCs on BCs.
Ethereum supports programmable SCs and
provides a virtual machine EVM to execute SCs
deployed [Buterin 2014, Wood 2014]. Ethereum
provides a Turing-complete programming language
to support engineers to develop SC code. It is like the
Apple Store, where everyone can create and sell
applications to users. Similarly, everyone can create
their SCs and these SCs can be made available for
others.

However, in the Ethereum, when an SC
completes its execution, the results do not need to
go through the consensus process before they will
be written into the database. Thus, potentially it is
possible that SC execution may produce different
results and they get saved in the system.

Hyperledger SC: Hyperledger Fabric
[Androulaki 2018] is an open-source BC system
developed by Linux Foundation with IBM as the
lead. It is a permissioned BC without resident
tokens. It uses the term “chaincode” instead of SC
because like Ethereum the chaincode has nothing to
do with legal contracts.

A distinct feature of this system is that the ledger
and the chaincode parts are separated, and

chaincode execution results must be voted before
they can be placed into the ledger. Thus, it is easier
to manage chaincode execution than other SC
systems, and the chaincode execution results are
more likely to be correct as they have been voted.
Specifically, it has two kinds of servers, committers
and endorsers, committers vote on the results
produced by endorsers, while endorsers perform
the chaincode execution, but they are not involved
in consensus voting. In this way, the chaincode and
ledger aspects are separated in Hyperledger.
Hyperledger also uses chaincode as a part of the
consensus process for transaction validation.

Corda: Corda is a system inspired by BCs, but it
is not a BC system. A Corda SC is an agreement that
has two parts, the first is the executable part that
can be executed and during execution accept human
input. And the second part contains legal proses
that involved parties need to comply. Corda SCs
links business logic and business data to associated
legal prose to ensure that the financial agreements
on the platform are rooted in law and can be
enforced. The Corda system has its unique
consensus mechanisms, and not all the nodes
participate in this process, running SCs on top Corda
needs to fit into the Corda execution model.

OpenLaw: OpenLaw (https://openlaw.io/) is a
BC platform to integrate legal contracts with SCs. It
allows lawyers to model all or parts of legal
agreements using SC to decrease the cost and
friction of creating, securing, and generating binding
legal agreements. It turns the traditional legal
contract into documents with embedded SC code
using Legal Markup Language similar to Wiki Text.
Lawyers can digitally sign and securely store legal
contracts using OpenLaw - while maintaining "user-
friendliness" and industry compliance.

However, most contracts today use natural
languages, and these languages are significantly
different from programming languages that SC code
will be expressed. Thus, the following problem is
that it is difficult to translate an existing legal
agreement into a SC as these two are significantly
different matters. One term in natural language
might have multiple explanations but a
programming language can have only one semantic
(otherwise an execution of the code on different
machine may produce different results), and it is
difficult to encode all the explanations in
programming languages. Even if encoded, it is hard
to decide which one should be executed in a specific
context. The law is generally artificial, local, and
uncertain, while public BCs are often automated,
global, and deterministic. The two are closely
related and maybe in conflict.

Kantara Initiative: This is a BC and SC
discussion group (BSC DG) to discuss various issues
after the DAO event. They propose that SCs must
have the following features [Hardjono 2017]:

135

Meaningful programmatic code: The code must
perform meaningful action involving the named
subjects and objects.

The digital representation of real-world subjects
of the agreement: The legal parties involved must be
validly represented digitally within the code. This
feature requires digital identities.

Digital representation real-world objects
and/or actions of the transaction: The legal objects
(e.g., assets) involved must be validly represented
digitally within the code.

Verifiable correspondence between actions
represented in code and actions in the real world:
The actions represented by the code must
correspond to real-world actions or changes of state
recognized within the given legal context/domain.

Legal prose meaningful within the designated
legal context/domain: Legal prose – understandable
to actors within the legal domain – must accompany
and be bound to the code portion (e.g., digitally
signed).

3. SC Legal Consideration

The new SC framework will integrate with law
in two ways. First, SC should be designed to
partially automate the execution steps in legal
contracts. Second, SC execution should produce data
that can be used as legally valid evidence.

3.1 Automating the Contract Execution

Contract execution is the process whereby the
contractual parties perform their duties according
to the legal agreement. Contract execution can be
done both online and offline, depending on the
nature of the contract and the contractual terms. For
example, the execution of a sales contract –
purchasing fruits in the market – should be done by
physical actions. The execution process is the seller
hands over fruits, then the buyer pays money. If a
transaction occurs online, then the execution of the
sales contract becomes technology-driven
processes: the buyer placing her order by clicking
payment, banks transferring money from the
buyer’s account to the seller’s account, the seller
accepting the order and transferring the ownership
of items. SCs can automate online processes, but not
offline conducts. Therefore, some SCs may partially,
not fully, automate the execution of legal contracts,
particularly those contracts with offline activities.

The concept of partially automating the
execution of legal contracts is different from the
ideas of existing SC projects. For instance,
comparing to OpenLaw with a focus on translating
all or parts of legal contracts to code, this Beagle
project aims at executing legal contracts. OpenLaw
acts as a translation tool, and it carries no legal
implications. In contrast, our SC concept involves
legal implications. It is part of the contract execution
processes. It carries not only letters of the law but
also bears legal consequences.

3.2. Producing Valid Evidence.
Evidence is something legally submitted to a

tribunal to ascertain the truth of a matter. It
determines what information can be presented in a
legal proceeding. Evidence can come in a wide
variety of forms, such as a piece of writing, a
fingerprint, a testimony, a picture, a video, and a set
of experimental data. But due to nature of SCs, this
paper refers to online materials, presented in the
form of data [Yu 2017b].

Without considering excision and exception
rules, to be valid, evidence should bear three
properties: relevance, truth, and legality.

Relevance means that evidence is relevant if it
has any tendency to make a fact more or less
probable than it would be without the evidence. To
be relevant, the specific piece of evidence must
relate to some time, event, or person in the present
lawsuit.

Truth means the evidence presented should be
authentic. What evidence tends to prove should be
true and objectively exist, because any case would
occur both in space and in time. What happened was
subject, not object. Law requires that all materials
should be proved to be true to be valid.

Legality has three implications. First, evidence
should be collected by legal authorities through
legal procedures and methods; second, evidence
should have legal forms; third, evidence should
come from legal sources.

SCs could perfectly produce valid evidence that
bears three properties: relevance, truth, and legality.
As mentioned, this paper narrows the scope of
evidence to online data. SCs can fulfill the
requirements of valid evidence via producing real-
time, process, and immutable data.

Real-time data: The data must be collected in
real time or near real time for most IT applications.
As data can be easily changed by IT systems, data
not collected in real time may have been changed
before they are entered into BCs. SCs can produce
real-time data as they run on BCs. Once data are
produced in a real-time basis, they prove the
relevance property of the evidence, because the
existence of such data has a tendency to make a fact
more or less probable than it would be without the
data. And it also helps to determine the truth of
evidence as data record what happened in time and
space objectively.

Furthermore, data collected should have
associated data such as time of the event, data
collection agents or devices and their IDs, other
relevant information such as the communication
medium used to transmit the data from the source
to the BC. For example, an event that a person
entered into a private room, the time of the event,
the associated photo, the device that captured the
photo, the communication device and wire used to
transmit the data are all relevant data.

Process data: It is necessary to collect data
during the process of the event, not just the result

136

data [Yu 2017b]. The reason that SCs can collect
both the process data and the result data come from
a BC. A complete record of data reflects the complete
story of an event or a transaction. This also elevates
the relevance and truth of data and ascertain
evidence’s validity. It can also support the legality
of the evidence produced.

In the future, it is possible that the law will allow
validated SCs, such as by proper validation agencies,
can be a valid source form of producing evidence,
and the data on SCs are a valid form of evidence.
Additionally, gathering evidence through SCs would
be a better procedure and method than collecting
evidence by the human as SCs are more technical
and objective, with less human mistakes.

Immutable data: Data collected must be
preserved and have not been modified. SCs that run
on top of a BC can support this feature. The BC can
guarantee the immutability through its
cryptography and consensus mechanisms. The
immutability is the most significant and efficient
proof that evidence is authentic and trustworthy. It
also tends to make a fact more or less probable than
it would be without the evidence. In other words,
immutable data also demonstrate the relevance
property of valid evidence.

4. SC Template Production

Instead of translating legal contracts into SCs,
the Beagle framework suggests that domain
analysis should be performed to develop SC
templates that can be used to develop SCs later. The
template will cover those common terms and
conditions in an application domain, e.g., real-estate
transactions. While each individual real-estate
transaction is different, but most of these
transactions share significant commonality. The
goal of templates to capture these commonalities,
furthermore, significant effort is made to these
templates so that they can be easily translated into
SC code once they are substantiated.

4.1. Design Principles of SC Templates

This section defines a set of principles for the
design of SC templates regarding the legal
agreement process. The design of SC templates
needs to follow the following six principles: process-
based principle, trusteeship, consensus, oracle,
accountability, and rollback. One can see that this
work is essentially domain analysis in software
engineering, and this time the goal is to generate a
set of SC templates for a specific application in a
domain. The template concept carries two
important goals: 1) common legal processes for that
particular application will be captured including not
only normal scenarios but also failure scenarios; 2)
the template will be stated in a way that facilitate
formal model and code generation later.

This section takes a real-estate purchase
contract as an example to demonstrate SC
templates. The lifecycle of a contract includes

contract formation, execution, enforcement, and
remedies, see Figure 1. SC templates will be applied
to the execution phase of a contract, focusing on the
buyer and seller’s main legal obligations, i.e., the
exchange of consideration and ownership.

Figure 1: State Diagram of Contract Lifecycle

Process-based principle: We asked lawyers to

label the main rights and obligations in each type of
contracts. These rights and obligations will be
execution objects of a SC. In addition, lawyers also
need to estimate the potential disputes at every step
of the contract execution and come out with
possible solutions that can be automatically
executed. The “disputes-and-solutions” process will
be designed accordingly in SC templates. The Beagle
abstracts the logic of the process into a contract
template with configurable variabilities.

 As contracts have many categories, SC
templates also have many categories. For a practical
system, it is necessary to develop a library of SC
templates for a variety of applications. Each
template contains a main legal process (the main
rights and obligations) to enforce a set of variable
processes.

Taking the real-estate purchase contract as an
example, the main rights and obligations are that
the buyer transfers consideration and the seller
transfers the ownership of the property. Thus,
exchanging the consideration and the ownership of
the property is the legal process to enforce in the
template.

If something goes wrong, e.g., the payment by
the buyer not fulfilled by the due date, the template
will specify steps to stop the transfer of the
ownership. This is how “disputes-and-solutions”
pattern can be designed in SC templates.

Trusteeship Principle: In today’s business,
sellers and buyers for a transaction will request a
law firm to be the trust to ensure that payments are
made, and assets are accurate and legal. In
cryptocurrency, this mechanism is not used [Tsai
2018a, Wang 2018, Bai 2019]. However, trusteeship
will still be needed if other kinds of assets involved,
e.g., real estate, stocks, or bonds. The trusteeship
process is divided into two main steps:

Step 1 (confirmation stage): An agency receives
the money transferred from the buyer, and the
commodity information from the seller, then
verifies the payment from the bank, and the

137

authenticity of the information from the
government office.

Step 2 (transfer stage): Next, the trustee agency
will transfer the payment to the seller and charge a
fee. All the above steps concerning the trusteeship
process are performed on SCs. A trusteeship is
modeled as a main process in a Beagle template, see
Figure 2.

Figure 2: Trusteeship Process

Once the main processes are specified, irregular

processes can be identified. For example, payment
not made, and assets not real are two examples that
result in process termination without the transfer of
the ownership of an asset.

Oracle Principle: The Beagle model requires all
the data needed for SC execution come from the
underlying BC, and any resulting data must be
written into the BC. However, not all data will be
produced by SCs, and thus some data may come
from outside of the BC, such as the Internet. The
Beagle model requires that any data outside of a BC
must go through an oracle process to ensure that
data entered are correct.

Data may still be incorrect even if data have gone
through the oral process. Reasons are various, such
as failure in communication, synchronization faults,
or malicious attacks. Thus, data in BCs should
integrate an integrity score system. High integrity-
scored data means that data are more likely to be
correct, and low integrity-scored data are prone to
be wrong [Tsai 2018a, Tsai 2018b]. When specific
data entered into a BC, the source of data, as well as
any existing integrity scores will be recorded. For
example, if the data come from another BC with
existing integrity scores, the scores will be recorded
and adjusted for the integrity level of the BC. If the
BC has high integrity ranking, the same score can be
used. If the BC has a low ranking, the integrity score

will be lowered accordingly. The BC may also rank
the integrity level of any incoming data source to
provide the initial integrity score for the data from
that particular source.

Integrity computation will follow the Biba
integrity model, i.e., users can create content only at
or below their own integrity level. Thus, if a BC has
B integrity ranking, all the data coming from that BC
can have at most B integrity score.

 For example, if the BC uses two data to perform
a computation, the resulting data will have the
lowest integrity score of the input data.

As the integrity scores of data will in general go
down in the system, the BC may employ Integrity
Evaluators (IEs) to raise integrity scores from time
to time. These IEs uses domain application rules to
raise data integrity scores. For example, if data are
financial data, accounting principles may be used to
verify that the data are consistent with other data,
and if they are consistent, the integrity score can be
raised. For example, totalAmount can be determined
to be shareNumber multiplied by sharePrice. If the
sharePrice and shareNumber are known to be of high
integrity, and totalAmount is consistent with these
two data, totalAmount integrity score can be raised
to be the minimum of sharePrice and shareNumber.
In this case, integrity scores can be maintained in
BCs.

Consensus Principle: When executing a SC,
each participating node on the BC computes data
independently. These nodes are expected to
produce consistent computing results. If more than
one results are obtained, the BC will check which
one is the correct result. This process is used by
Hyperledger [Androulaki 2018].

A template will identify key events in the
corresponding legal contracts. In a real-estate
transaction, key events are where initial purchase
agreement signed with the right deposit, proof-of-
ownership obtained, inspection report obtained,
any amendments completed, total payment made,
and ownership transferred. Evidence of these key
events must go through the consensus process of
the BC to ensure that all the parties, such as buyers,
sellers, loan bank, title agency received the same
information at this round of consensus voting. Each
of these key events must be fulfilled before a
complete SC is done. The process may take seconds,
days, weeks or even months.

During the process, data are stored in the BC as
intermediate data. They cannot be modified due to
the BC immutability characteristic. If data entered
are incorrect, a user may request a new item to be
added into the BC without changing the existing
data. In this way, the new and corrected data can be
incorporated while not compromising the BC
immutability property.

Data entered also have two timestamps. One is
the time when the data is recorded by relevant
agents. Another one is the time when the data is
entered into the BC. Two timestamps will be useful

138

in validating the data in case of court proceedings.
Each time any data entered into the BC, the data
must have gone through the consensus mechanisms
of the BC.

BC may perform check on all or selected sample
data to ensure that data entered are correct through
the consensus process. If data are found to be
inconsistent, this may signal the BC is compromised
as data entered must have gone through the
consensus process earlier. If any node in a BC has
any inconsistent data, the particular node may have
been compromised. Figure 3 illustrates a long
process.

Figure 3: A SC with a Long-Lasting Process

Accountability Principle: The design of SC

templates should follow an accountability principle.
Assuming the transaction of SC is not fulfilled at
some stages, who should be responsible? The Beagle
framework applies the accountability principle to
address this issue. In the template, a preliminary
judgement as to whose fault should be made,
followed by a termination or recovery of the
transaction.

 For example, in a real-estate purchase contract,
if the final transaction is not fulfilled, the one who is
at fault should bear consequences accordingly. If it
is the buyer’s fault, i.e., purchasing a house using an
illegal source of money. then the buyer should bear
the responsibility that the process would be
suspended, thus the buyer cannot get the ownership
of the house.

Rollback Principle: A SC template not only
describes correct and smooth process, but also deal
with problematic process. The way a SC template
reacts to the problematic process is the rollback
process. For example, if initialDeposit to the trust
company is made, the SC will record that the deposit
is available. However, a week later, the trust
company was informed that the source of the
deposit is not proper, such as the money was
borrowed from another party, the SC should roll
back the process to the point where the
initialDeposit not done.

This can be done automatically using event
analysis such as event tree analysis. Combinatorial

analysis of related events can be analyzed and
stored in the template to ensure that the template
can address all the possible event sequences. This is
important because the goal of Beagle SC is to make
these SCs as a part of legal contracts, and legal
contracts needs to address any possible sequences
of events.

5. SC Model and Code Generation

This phase develops SC code from templates. In
this project, the SC has three components:

NL contract (NL is an abbreviation of
Natural Language);
Formal SC model;
Executable code.

This process is divided into two stages:
development of formal SC model, and development
of SC code from the formal model.

Development of Formal SC Model

Users (lawyers and contract participants) first
select a SC template and configure the contract
template. Parameters like deadlines and the price of
real estate are determined and filled by users. Once
the configuration is done, the formal SC model is
created. This will serve as the second component of
the SC. The relationships between the formal model
and NL contract will be maintained, e.g., an item in
the formal model may correspond to the
corresponding item in the NL contract. Thus, if the
formal model or NL contract is changed, the
corresponding change will be updated accordingly.

 At the same time, users need to check the
agreement in the textual contract updated as user
inputs. When finishing configuring the template, a
SC model is built from the system. Users can get legal
regulations through the search engine or
recommendation engine, then input the contract
parameters.

Development of SC Code from Formal SC Model

SC code is generated from the formal SC model
to run on the SC platform. The generation can be
automated, but it is difficult to automate the
generation process completely.

This project also generates interfaces to interact
with external SCs. To facilitate the code integration,
Beagle code generator also generates API of SCs.

SCs often involve financial transactions of digital
assets. It must be highly reliable and secure [Bai
2019]. Thus, its development needs to follow
rigorous development methodology to prevent any
potential faults in code or in the model. For this
reason, the Beagle framework follows the Model-
Driven Engineering (MDE). MDE focuses on develop
correct software with a set of formal modeling and
verification techniques, successfully applied to
developing safety-critical systems [Ge 2017, Ge
2018a, Ge 2018b].

In addition to formal development, MDE used
must also cover the legal aspects. SCs can be lawful

139

if the legal experts confirm that the SC code is
consistent with a legal contract with respect to both
the process and data involved. However, similar to
the cost of drafting a paper-based contract, the
development of the corresponding SC is also a costly
and time-consuming process. The MDE supports
two important features: rapid iterative
development and friendly human communication.
The MDE supports rapid iterative development by
maintaining traceability between contract
templates, between SC model and code, by
automating model translation and code generation.
The MDE supports friendly human interface by
providing quick and clear feedback to developers,
lawyers and participants in user-friendly manner
thanks to formal model. For example, if the buyer
transfers consideration but the seller does not
transfer the property ownership, a visual scenario
(called counterexample) will be automatically
generated by simulator to help users to understand
the failure.

6. Execution

This phase executes SC code at runtime. There
are several issues in this phase described below.

Triggering: Which system can trigger the
execution of a SC? Multiple choices are available: 1)
triggered by the change of data in the BC; 2)
triggered by the application process

In the first case, the SC infrastructure design can
be complex. Specifically, if the system has lots of SCs
with numerous conditions attached, the system
needs to capture these conditions that are satisfied
in real time to trigger the SC execution. One way to
address this problem is to have a set of dedicated
servers to watch these conditions. They need to
reach a consensus to trigger an SC execution. In this
way, each SC execution will start at the same time
with all the participating nodes. But this will slow
the SC process and add complexity to the SC
infrastructure.

In the second case, as multiple voting servers are
active in the BC, is it a good idea that only one server
will trigger the execution. However, this only sever
needs to be selected dynamically, which can be the
single point of failure. This issue can be addressed
by having a circular chain of nodes. Each node
watches over the previous node in case of failure.
Any failure will be automatically taken care by the
following node in the chain, but the chain position
needs to be decided each time.

A static choice will not be an acceptable solution
as what happens if the statically chosen node is
compromised. Another way is to have a voting
consensus process to decide if an SC is needed. For
mission-critical applications, a 100% vote may be
necessary before the SC can be triggered, e.g., a large
transaction.

Data used by SC execution: In the Beagle
model, only data stored in the BC can be used by SCs.
This requirement is to ensure only correct data (for

legal purpose) are using as data stored by the BC are
assumed to have higher integrity.

External data can be used only after it has been
accepted by the BC Oracle and consensus voting
process. However, this introduces new problems. As
a SC can be a long-lasting process, can the system
use those new data entered into the BC in the SC or
not. For example, any data that arrive after the SC is
triggered will be considered as new data. An SC can
distinguish these new data from old data by
examining the timestamps of associated data.

One way to address this problem is that the
triggering function specify the timestamp of data to
be used. In this case, even the data are changed
during the SC execution, the right data have been
pre-specified.

However, this may not be the optimal solution.
In the real estate purchase contract, an SC may
prefer to use any new data rather than using the
existing data. For example, amount paid may be
minimal in the beginning, but as buyers keep on
depositing money, the balance will increase, and the
SC should use the new data. HasHouseInspected is
another item that an SC prefer to use data. In the
beginning, the item carries No, and later must be
changed to Yes before the transaction can go
through per state regulation.

However, not all the data can be changed, for
example, buyers, sellers, house information should
not be changed, in fact, if they are changed, this may
indicate a potential fraud. For example, if seller
information is changed, this may indicate that the
seller may not be the legal owner.

Thus, a better solution is to mark those items
that should take new data as they come into the BC,
and those items that should not have any new data
during the process. When an item that should not
have any new information has new information, the
SC will automatically trigger a process to terminate
the transaction.

Number of execution processes: One can
design a SC that is executed only by one server. This
will cause the server to be a single point of failure.
The other extreme is that the SC is run on top of all
voting servers or selected participating servers. Or
one can design a system that selected servers are
involved in SC computation.

Execution servers: Another issue is that
whether these execution servers can be logically or
physically the same as voting servers in the BC. In
some BC design, they can be logically different, but
physically they can be the same depending on
system configuration.

Completion of SC execution: Once a SC has
competed its execution, and the results have been
accepted by the BC consensus process, all the data
produced by the SC must be written into the BC. This
has three implications:

1) Resulting data cannot be saved at any place
outside of the BC until it is saved at the BC first;

140

2) Resulting data must be saved at the same
block positions with the same consensus voting;

3) A BC can store two kinds of data only. First is
the data produced by SCs; second is the application
data with high integrity, and additionally an oracle
process has also verified the data.

These three principles maximize the probability
that all the data stored in BCs are correct.

7. Verification & Validation

As software code, the correctness of SC needs to
be checked by V&V. However, SC is different from
traditional software in numerous ways.
Accordingly, their V&V process and methods are
different from traditional V&V processes.

The new framework for SCs should allow the
developers to verify and validate their
implementation. This section discusses five
important issues related to the V&V of SCs:

What are the differences between SC software
and traditional software?
What are the sources of SC faults?
What are the SC desirable properties?
In which stages of SC development should
perform V&V by using what methods and tools?
How can one apply crowdsourcing to SC V&V?

7.1. SC and Traditional Software

SC software is different from traditional
software in various aspects including data
immutability, process reversibility, attack
availability, and man-in-the-loop.

Data immutability: As discussed in Section 3.2,
data produced from SCs are preserved in BCs. This
provides traceability, but data analysis become
complex and involved due to unique BC data
structure.

Process reversibility: In cryptocurrency,
transactions cannot be reversed. But, in most
countries, transactions can be reversed even few
days after trade completion, e.g., a stock transaction
can be reversed two days after the trade. To
implement this rollback mechanism, SCs need to
have pre-specified rollback mechanism for the
system to return to the state. This also means new
data must be added to the BC to indicate the
previous data entered are no longer valid as the BC
cannot allow any data change once entered. Another
way to do this is to save those intermediate data as
separate data and commit the final data after the
settlement day is over. But this mechanism will
introduce other issues as sometimes SCs can last for
a long time such as months, intermediate data can
be enormous in size.

Attack availability. A SC in a public BC can be
accessed by all the nodes, and they can be attacked
by anyone like the DAO event. A SC in a
permissioned BC can also be attacked by
participating nodes. This is the reason that SCs and
their running platform are prone to be attacked.
This vulnerability requires encoding solutions to

handle attacks in SCs or in its running platform. It
also requires the platform to monitor and verify the
execution of SCs online.

Man-in-the-loop. Currently SCs complete
transactions without third parties as in
cryptocurrency systems, but this will not be true in
financial systems. Under the current law, parties
involved must sign legal documents before they
become binding. Thus, development and execution
of SCs without signatures under the current law will
not be legally valid. Not only signatures, numerous
transactions today require external legal documents
not available in SCs, e.g., property ownership
certificates. These can eventually be digitized too,
e.g., they can be issued as digital certificates stored
in BCs, but currently they are not, and thus current
SCs must live under the current legal condition.
These should be considered in performing V&V for
SCs.

7.2. Fault Sources of SCs

An SC may fail due to many reasons such as:
Transaction process not properly designed;
SC code not properly implemented;
SC platform not properly implemented;
Communication between distributed BC nodes
not properly synchronized;
External attacks.

The first three types of faults originate from the
software, while last two from the SC platform.

Faults in transaction processes might arise
from the transaction process not properly defined,
the wrong expression by the participants, improper
legal interpretation and actions, and mistakes in
legal contracts. Some of these issues can be
addressed by the consensus process in BCs and SCs,
and newly added rollback mechanisms.

Faults in SC implementation might come from
SC design templates, formal or informal SC models,
and SC code. These faults may come from human
errors or by code or model generators.

Faults in platform implementation might
come from the BC platform. For example, the DAO
event was caused partially by the Ethereum
platform.

Faults in communication systems are due to
events and data synchronization problems in
distributed systems. A pair of local ordered events
might not preserve the order when they arrive at
other distributed nodes, and this may trigger wrong
events for an SC action. This is a serious problem as
multiple (from few to thousands) transactions are
grouped in blocks, and they are processed at the
same time by BCs. This introduce new kinds of
synchronization problems not encountered before.

Faults in execution environments come from
the failure of hardware or the third-party software
on the platform system, the human operation like
wrong operations, or external attacks [Tsai 2017]. A
survey of attacks on Ethereum SCs can be found in
[Atzei 2017].

141

7.3. Desirable SC Properties

SCs, being critical processes, should cover the
above fault sources. Historical attacks on SCs
provide guidance to develop appropriate
techniques.

Process correctness The legal process in SCs
should conform to the true intent with respect to the
process as well as data, e.g., a SC should roll back
when the termination conditions are satisfied, and
the rollback mechanism should roll back to the
appropriate time points in case of partial rollback.

User behavior property: Most legal SCs have
the man-in-the-loop feature. Each user interaction
needs to specify intended user behaviors at the
appropriate process step with expected data. For
example, the SC needs to check if proper payment
has been made and expect the answer is yes. In case
of yes, the process will move to the next step; in case
of no, the process will either stop or roll back to the
previous step.

7.4. V&V in SCs Development

At each step of the MDE, different formal
verification methods can be applied. The SC V&V
process can be divided into three stages:

Legal analysis: This is performed by
requirement modeling and validation method;
Contract development: This is done by formal
contract modeling, formal verification and
formal code generation;
Contract execution: This is done by runtime
verification.

 Today, most existing works perform testing and
formal verification to the SC models and code. This
aspect would not be addressed as such works do not
interact with law.

Legal analysis by simulation

The template-based approach allows
developers, lawyer, and participants to develop
various transaction models. When users fill a SC
template with data, an actual contract model is built.
Even though legal analysis has been done in the
template earlier, the actual contract model should
be subject to legal analysis. The model is formal, and
thus can be validated by running scenarios on the
formal model. This process is a simulation process.
 In the Beagle framework, interactive simulators
help users validate the SC model to satisfy their
intention. Lawyers and developers can rely on the
simulation tool to accelerate the iterative
development of SC templates and enrich the library
of SC templates. The simulation tool can be
enhanced each time a specific contract is analyzed
as each contract will add new scenarios.

SC design verification by formal techniques

Simulation can help users validate the model but
does not guarantee the correctness of the SC model
because the search is not exhaustive. Since the birth

of SC, significant works have been done on applying
formal methods to SC code.

The Beagle framework uses MDE, and
significant verification effort will be on the formal
contract model. Model checking can be used to
verify the contract model. As SCs reflect
transactions, the structure is mainly composed of
conditional branches. Most of the SCs have relatively
low computational complexity, and the state space
is usually finite, making them suitable for adopting
automatic theorem proving (ATP) methods like
model checking. A more complicated contract can
still be verified by interactive theorem proving (ITP)
methods under the premise if computing resource is
limited. But this method may increase the manual
effort and make the verification work semi-
automated.

A project showed that it is feasible to verify the
correctness and necessary properties of a SC
template using SPIN model checker [Bai 2018]. This
Beagle project chooses Timed Automata (TA) as the
template modeling language because most legal
processes have time constraints. Various model
checkers such as UPPAAL can be used to verify SC
models developed in TA.

SC Code Verification

Many recent works use model checking
techniques to verify the Solidity contract code. For
example, the work [Abdellatif 2018] verified SC
code and BC execution protocol along with users’
behaviors based on a BIP model checker. The work
[Chen 2018] verified concurrency problems using
Maude model checker. The work [Qu 2018] checked
the vulnerability in SCs especially from the
perspective of concurrency using the CSP theory
and FDR model checker. The work [Nehai 2018]
verified that the application implementation of SC
complies with its specification using NuSMV model
checker. The work [Alt 2018] verified the functional
correctness of SC code using SMT solver. Other
works relied on theorem proof to verify the
intended behavior of Solidity contract code
[Bhargavan 2016, Amani 2018, Le 2018].

Although these works show feasibility to verify
Solidity SC code, the field is still at its infancy with
many issues:

Turing-complete language issue: The choice
of Turing-complete language limits the possibility of
thorough verification. It is expected that non-Turing
complete language can overcome this hurdle [Atzei
2017]. Some works proposed experimental
languages for this reason.

Property-completeness issue: As discussed in
Sections 6.2 and 6.3, one needs to understand the
sources, types, and effects of faults and define an SC
property type system that allows developers to
specify a complete set of properties.

State space explosion issue: Model checking
techniques consume significant resources when the
behavior of the target system is complex.

142

High learning curve issue: Formal verification
techniques are costly to apply in real systems
because the learning curve is high.

The Beagle will choose a language that is not
Turing complete to reduce the design and
verification effort. Most of the SCs are designed for
financial transactions, thus being Turing complete
for the SC model or language is not necessary. The
model can use consistency tool to ensure the
conformance between the design model and the
generated code.

By using a template-based and process-based
approach, the issue of state space explosion can be
relieved by introducing property-specific state
space reduction techniques.

Crowdsourcing property modeling (Section 6.5)
and verification platform can be a promising
direction to address issues in this Section.

7.5. Crowdsourcing Testing for SCs

This section applies crowdsourcing techniques
for SCs testing.

Crowdsourced testing is an emerging trend in
software testing. It makes use of the benefits,
effectiveness, and efficiency of crowdsourcing and
the cloud platform. Crowdsourced software testing
has the advantage of recruiting, not only
professional testers, but also end users to support
the testing tasks. It has been applied to various types
of testing activities, including usability testing,
performance testing, GUI testing, test case
generation, and the oracle problem.

 As SC development is complex, crowdsourcing
is a way to reduce development risks. As more
people involved in development, a higher quality of
testing will be reached. However, as SCs involve
multiple domains of expertise, crowdsourcing
needs to engage experts with different skills and
knowledge.

Participants: Users, legal experts, software
developers, formal method specialists, and software
test engineers may work together to evaluate
various aspects of SCs. They are encouraged to
discuss with each other in social media or
crowdsourcing platform to create a synergy of ideas
and discuss potential strategies. Participants can
gather externally and internally. External
participants participate can work on funding.
Internal participants can evaluate the results
obtained from crowdsourcing, and suggest
directions for further evaluation

Processes: Crowdsourcing tasks need to be
planned, organized, and even optimized. For
example, specific tasks can be crowdsourced first,
and the results can be evaluated by another crowd
or by an internal team. In this way, crowdsourced
tasks can be repeatedly performed, with the next
task planned based on the results of previous tasks.
These tasks can be performed concurrently or
sequentially by external and internal teams. For
example, SC templates can be evaluated by external

crowd lawyers and by an internal team of lawyers.
The internal team will determine the final product
after several iterations. In this way, templates
developed are more likely to be comprehensive and
correct. These lawyers are free to use any tools and
discuss with fellow lawyers.

Platform: It is better to conduct crowdsourcing
tasks using a platform. The platform can support
communication, act as an search engine, or serve to
automate evaluation tools, such as formal method
tools and event-tree analysis tools.

8. Runtime Verification

Even the model and code are formally verified to
be correct, it is still necessary to monitor the
runtime behavior and verify this behavior at
runtime or offline.

For example, a SC is to buy IBM stock when the
price hits $200. When the SC executes, can one have
an independent evaluation that the IBM stock price
has indeed hit the price specified? This can be done
if the SC has another associated process that will
automatically send a message to the SC user that the
stock price has hit the target.

It is possible that the SC may still fail to complete
due to the market condition. The order cannot be
fulfilled even though the triggering condition has
been met. Those monitoring processes are not SCs,
and they do not need to follow the formal process of
the Beagle, but they provide additional assurance to
users that the right SC has been triggered.

This can be done for examples as follows:
Whenever a SC is triggered, a message
containing the SC ID, time of triggering, input
data, and participating node ID will be sent to
relevant users. These messages will be stored
in BCs;
Completion of the SC execution will generate
another message containing SC ID, the results
of execution, and time of the event to relevant
users. These messages will be stored in BCs;
Completion of SC, i.e., results are stored in BCs,
will generate another message indicating the
SC ID, results, block positions that contain the
results, and ID of these blocks and nodes. These
messages will be stored in BCs.

The work [Ellul 2018] showed how runtime
verification techniques can be used in the domain of
SCs. Although BC is different from traditional
distributed software, runtime monitoring and
verification methods can be applied.

9. Conclusion

This paper discusses fundamental issues of SCs
where law is relevant. Once SCs consider the legal
aspects, SC design need to make significant changes,
and most of changes will be needed in the SC
development and infrastructure. However,
currently legal contracts are too far away from being
the basis for formal legal computing as both

143

languages used and more importantly the structure
and flow in these two are significantly different

Thus this paper proposes the Beagle framework
to address these issues. From the perspective of law,
this framework treats SCs as a key component of
legal contracts, using SCs to partially automate the
executions of legal contracts, and produce legal
evidence. From the perspective of software
engineering, this framework covers the chain of
production, execution, V&V, and runtime
monitoring with a template-based approach. The
template is developed base on domain analysis for a
specific application.

Formal modeling and verification are employed.
In this Beagle framework, law and code are
connected, code is generated from formal contract
model, and the model is based on templates, and
templates are based on legal regulations. In this way,
legal rules and regulation can be executed
eventually as a part of SCs running on top of BCs.

Additionally, this project is a collaboration
projects between legal experts and computer
scientists in two countries. It facilitates the
understanding of two fields and advances cross-
interdisciplinary studies. It provides a foundation
for the convergence of the legal world and the
computer science world.

10. Acknowledgement

This work is supported by National Key
Laboratory of Software Environment at Beihang
University, National 973 Program (Grant No.
2013CB329601) and National Natural Science
Foundation of China (Grant No. 61472032).

11. References

[Abdellatif 2018] T. Abdellatif and K.-L. Brousmiche,
“Formal verification of smart contracts based on users
and blockchain behaviors models,” in New Tech-
nologies, Mobility and Security (NTMS), 2018 9th IFIP
International Conference on. IEEE, 2018, pp. 1–5.

[Amani 2018] S. Amani, M. Bégel, M. Bortin, and M.
Staples, “Towards verifying ethereum smart contract
bytecode in isabelle/hol,” in Proceedings of the 7th
ACM SIGPLAN International Conference on Certified
Programs and Proofs. ACM, 2018, pp. 66–77.

[Alt 2018] L. Alt and C. Reitwiessner, “Smt-based
verification of solidity smart contracts,” in International
Symposium on Leveraging Applications of Formal
Methods. Springer, 2018, pp. 376–388.

[Androulaki 2018] E. Androulaki, A. Barger, V.
Bortnikov,C. Cachin, K. Christidis, A. De Caro, D.
Enyeart, C. Ferris, G. Laventman, Y. Manevich et
al.,“Hyperledger fabric: a distributed operating system
for permissioned blockchains,” in Proceedings of the
Thirteenth EuroSys Conference.ACM, 2018, p. 30.

[Atzei 2017] N. Atzei, M. Bartoletti, T. Cimoli. “A
Survey of Attacks on Ethereum Smart Contracts
(SoK),” in Maffei M., Ryan M. (eds) Principles of
Security and Trust. POST 2017. Lecture Notes in
Computer Science, vol 10204. Springer, Berlin,
Heidelberg.

[Bai 2018] X. Bai, Z. Cheng, Z. Duan, and K. Hu,
“Formal modeling and verification of smart contracts,”
in Proceedings of the 2018 7th International
Conference on Software and Computer Applications.
ACM, 2018, pp. 322–326.

[Bai 2019] X. Bai, W. T. Tsai, X. Jiang, "Blockchain
Design -- A PFMI Viewpoint" to appear in 2019.

[Bhargavan 2016] K. Bhargavan, A. Delignat-Lavaud,
C. Fournet, A. Gollamudi,G. Gonthier, N. Kobeissi,
N. Kulatova, A. Rastogi, T Sibut-Pinote,N. Swamy et
al., “Formal verification of smart contracts: Short
paper,”in Proceedings of the 2016 ACM Workshop on
Programming Languagesand Analysis for Security.
ACM, 2016, pp. 91–96.

[Buterin 2014] V. Buterin, “Ethereum: A next-
generation smart contract and decentralized application
platform,” 2014 accessed: 2016-08-22. [Online].
Available:
https://github.com/ethereum/wiki/wiki/White-Paper

[Chen 2018] X. Chen, D. Park, and G. Ro ̧su, “A
language-independent approach to smart contract
verification,” in International Symposium on
Leveraging Applications of Formal Methods.
Springer, 2018, pp. 405–413.

[Ellul 2018] J. Ellul and G. J. Pace, “Runtime
verification of ethereum smart contracts,”in 2018 14th
European Dependable Computing Conference EDCC)
IEEE, 2018, pp. 158–163.

[Ge 2017] N. Ge, A. Dieumegard, E. Jenn, B.
d’Ausbourg, Y. Aït Ameur, “Formal development
process of safety-critical embedded human machine
interface systems” in 11th International Symposium on
Theoretical Aspects of Software Engineering, 2017, pp.
1-8.

[Ge 2018a] N. Ge, A. Dieumegard, E. Jenn, and L.
Voisin. “Correct‐by‐construction specification to
verified code”. Journal of Software: Evolution and
Process. 2018 Oct;30(10):e1959.

[Ge 2018b] N. Ge, E. Jenn, N. Breton and Y. Fonteneau.
“Integrated formal verification of safety-critical
software”. International Journal on Software Tools for
Technology Transfer. 2018 Aug 1;20(4):423-40.

[Hardjono 2017] T. Hardjono, and E. Maler, “Report
from the Blockchain and Smart Contracts
Discussion Group to the Kantara Initiative,” June. 05,
2017. [Online]. Available:

144

https://kantarainitiative.org/file-
downloads/report-from-the-blockchain-and-
smart-contracts-discussion-group-to-the-kantara-
initiative-v1/

[Le 2018] T. C. Le, L. Xu, L. Chen, and W. Shi,
“Proving conditional termination for smart contracts,”
in Proceedings of the 2nd ACM Workshop on
Blockchains, Cryptocurrencies, and Contracts. ACM,
2018, pp. 57–59.

[Nehai 2018] Z. Nehai, P.-Y. Piriou, and F. Daumas
“Model-checking of smart contracts,” in IEEE
International Conference on Blockchain, Halifax,
Canada,2018

[Qu 2018] M. Qu, X. Huang, X. Chen, Y. Wang, X.
Ma, and D. Liu, “Formal verification of smart contracts
from the perspective of concurrency,” in International
Conference on Smart Blockchain. Springer, 2018, pp.
32–43.

[Szabo 1997] N. Szabo, “Smart contracts: building
blocks for digital markets,” EXTROPY: The Journal of
Transhumanist Thought,(16), 1996.

[Tsai 2017] W. T. Tsai, X. Bai, and L. Yu, "Design
issues in permissioned blockchains for trusted
computing." 2017 IEEE Symposium on Service-
Oriented System Engineering (SOSE). IEEE, 2017.

[Tsai 2018a] W. T. Tsai, Z. Zhao, C. Zhang, L. Yu, E.
Deng "A Multi-Chain Model for CBDC." 2018 5th
International Conference on Dependable Systems and
Their Applications (DSA). IEEE, 2018.

[Tsai 2018b] W. T. Tsai, and L. Yu. "Lessons learned
from developing permissioned blockchains." 2018
IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C). IEEE,
2018.

[Tsai 2019] W. T. Tsai, and Christine Jinag, “Three
Key Principles of Smart Contracts,” Jan. 17, 2019.
https://mp.weixin.qq.com/s/j5Ec2Jit69lsKOu1iexF
Ug

[Wang 2018] R. Wang, W. T. Tsai, J. He, C. Liu, and
E. Deng, "A Distributed Digital Asset-Trading
Platform Based on Permissioned Blockchains."
International Conference on Smart Blockchain.
Springer, Cham, 2018.

[Wood 2014] G. Wood, “Ethereum: A secure
decentralised generalised transaction ledger,”
Ethereum project yellow paper, vol. 151, pp. 1–32,
2014.

[Yu 2017a] L. Yu, W. T. Tsai, C. Hu, Baijie Li, J. Hu,
and E. Deng "Modeling context-aware legal computing
with bigraphs." 2017 IEEE Symposium on Service-
Oriented System Engineering (SOSE). IEEE, 2017.

[Yu 2017b] L. Yu, W. T. Tsai, G. Li, Y. Yao, C. Hu,
and E. Deng, "Smart-contract execution with
concurrent block building." 2017 IEEE Symposium on
Service-Oriented System Engineering (SOSE). IEEE,
2017.

145

