
Self-Aware Smart Contracts with Legal Relevance

Alex Norta
Large-Scale-Systems Group, Department of Software Systems,

Tallinn University of Technology, 19086, Tallinn, Estonia
Email: alex.norta.phd@ieee.org

Abstract—Conventional contracts (CC) that are not
machine readable are challenging to interpret, discon-
nected from ICT-systems and when conflicts occur,
tracking their execution is restrictively slow and chal-
lenging to enforce. On the other hand, so called self-
aware contracts (SAC) that are similar to CCs with
respect to legal enforceability, are machine readable
and supportable by blockchain-technology in combi-
nation with multi-agent systems. SACs do not re-
quire qualitative trust between contracting parties
because blockchains establish instead a quantitative
notion of trust as SAC-related events are immutably
stored while software agents manage the connections
to trusted information sources. However, currently ex-
isting machine-readable contract solutions, i.e., smart
contracts, lack suitable obligation- and rights con-
structs for execution and enforcement. Additionally,
current systems do not comprehend the dynamics of
legal relationships. This whitepaper address the gap
by specifying a so-called SAC-framework that enables
blockchain-driven self-aware agents-assisted contracts
for a decentralized peer-to-peer (P2P) economy.

Index Terms—self aware, multi agent, blockchain,
smart contract, decentralized, per-to-peer, e-
governance

I. Introduction

The traditional understanding of a conventional con-
tract (CC) is an exchange of commitments by identified
parties that are enforceable by law. An important pre-
requisite for a contract that most commonly exists as a
written document of evidence, is the voluntary engage-
ment of parties involved to establish a consensus [6]. In
most business cases, CCs are documents [19] that identify
the contracting parties uniquely and state explicitly the
commitments of the latter. When those commitments are
performed, their status changes over time. Another prob-
lem with the traditional form of setting up and managing
CCs is that they are often underspecified and the ability
to manually track their status is restricted. As there is no
concrete overview of the CC-status, the contractual rela-
tionship between parties is prone to conflicts. The resulting
costly conflict resolutions may even collapse an entire
contractual relationship. Also the enforcement of CCs [13]
proves to be either too complicated, time consuming, or
impossible, certainly in international circumstances.

The authors in [7] recognize shared blockchain tech-
nology enables business collaborations that require high-
reliability and shared, trusted, privacy-preserving, im-
mutable data repositories for smart contracts. So-called

business artifacts for adopting data-aware processes pro-
vide a basis on shared blockchains that enable business-
collaboration languages such a Solidity [10] of Ethereum.
In [23], the authors map a running case of a collaborative
process onto a smart-contract scripting language. That
approach addresses the trust-issue in collaborative pro-
cesses in that no single third-party entity must monitor
events. Instead, the blockchain enables trustless process
collaboration because of no single entity being in control.
The mapping from collaborative processes to blockchains
enables the monitoring of process enactment and an audit-
ing of related events. In [8], different smart-contract lan-
guage choices are compared. While procedural languages
are currently the norm[10], also logic-based languages are
alternatives.

The state of the art above shows that partial smart-
contract approaches exist for blockchain technology. How-
ever, there is a lack of a framework moving smart- to-
wards self-aware contracts (SAC) where the latter have
the ability to gather information about their internal and
external-contextual state and progress to reason about
their behavior, while being an artifact of law. Further-
more, the above described state of the art, there is not
recognition that such SACs must cater for having humans
in the contract loop. This paper fills the gap by posing the
question how to establish self-aware and human-readable
contracts as legally viable? To reduce complexity and
establish a separation of concerns, we deduce three further
sub-questions as follows. What enables contracts to be self
aware? What processing mechanisms are required for a
SAC? What means create a self-aware contract-exchange
protocol?

Based on a pre-existing ICO1 whitepaper [18], the re-
mainder of this paper is structured as follows. Section II
presents essential preliminaries. Section III focuses on a
smart-contract ontology and Section IV discusses the pro-
cessing of legal obligations and rights. Section V shows the
role of software agents that allow for self-aware contract-
collaboration protocols. Section VI evaluates the results of
this research and finally, Section VII concludes the paper
together with a future-work presentation.

II. Preliminaries

Scholarly literature about smart contracts exists in the
legal domain. In [1], the core elements of legislation are

1https://www.agrello.org/

978-1-5090-6014-6/18/$31.00 ©2018 IEEE

addressed, including duties and obligations that share
intersecting properties. The characteristic of a duty is
the absence of a benefiting party (beneficiary), while the
performance of an obligation serves a beneficial result for
a determined beneficiary. The focus of the paper is on
obligations the properties of which Figure 1 informally
depicts.

The properties in Figure 1 show a micro-process for
obligations development using the business-process mod-
eling notation BPMN [12]. The green-lined circle denotes
the start of the process and the red-lined circle the end.
Rectangles in Figure 1 are tasks and x-labeled diamonds
denote an exclusive-choice split and -join respectively.
Directed arcs connect the nodes along a control flow from
start to end. Figure 1 shows that obligations exist to either
do something, or to refrain from something.

In contract law, rights and obligations are related so that
if one party to the contract decides to use his right, there is
a corresponding obligation on the other party. Thus, rights
that stem from the contract are reflected in obligations
of the other party. Figure 2 depicts a micro-lifecycle of
rights specifications. After determining the beneficiary of
a right, there can either be a right to claim, or a right to
do something that pertains to an action type and object.
Finally, the obligors must be determined who enable a
right. For example, the lessee has a payment obligation
in a rental contract. In case of a late payment, the lessor
has the right to claim late-payment charges. After invoking
that right, the lessee has an obligation to pay.

III. SAC Ontology

A SAC must comprise important elements of contracts
to provide metadata during the contract execution. This
metadata can then be used in various ways by informatics
systems, but most importantly agents that assist, auto-
mate and manage contract execution. As mentioned above,
rights and obligations must be optimized for machine
readability. We show machine-readability in the sequel for
rights and obligations while maintaining the capability for
non-technical persons to comprehend the smart rights and
obligations based SAC.

The ontology for this paper we design with the Protégé
tool [14] that is a free, open source ontology editor for
systematic knowledge acquisition. Protégé comprises a
graphic user interface with plugins for varying ontology
visualizations and correctness checks. We employ the Her-
miT reasoner [5] to check the ontology consistency, identify
subsumption relationships between classes, and so on.

Figure 3 depicts the class diagram of the SAC-
framework ontology2. Several sub-class relationships exist
to capture all essential contractual elements. For example,
we refine an obligation by adding as subclasses Mone-
tary Obligation and NonMonetary Obligation to express
certain remedies are only available for non-monetary obli-
gations that can be a repair, or a replacement, while some

2SAC-OWL: http://tinyurl.com/lkkapvg

are monetary, e.g., late-payment charges. There exist also
person subclasses such as an Obligor who must perform
an obligation, a Beneficiary who is benefiting from the
performance of an obligation and optionally, a Third Party
as a beneficiary from the performance of an obligation,
e.g., a utilities provider in a rental contract.

The purpose of the Remedy subclasses in Figure 3 is
to eliminate negative consequences that result from a
breach of the contract. Additionally, by invoking remedies,
a beneficiary achieves a specific situation, if the obligation
had been performed correctly. For example, if a rental
payment is delayed for commercial property, the lessor can
claim late-payment Interest.

The Right subclasses are important as they reflect what
a Beneficiary can claim. For example, if a lessee destroys
furniture in an apartment, the lessor has the right to
Claim Repair, or Claim Replacement. Finally, the State
subclasses in Figure 3 reflect the status of an Obligation
performance in a contract lifecycle. We refer the reader to
[18] for more details.

IV. Obligation Processing

Since the obligation ontology is static, we employ
Coloured Petri Nets (CPN) [9] as a graphical oriented lan-
guage for covering the dynamic aspects of obligation pro-
cessing using CPNTools3. Informally, the CPN-notation
comprises states, denoted as circles, transitions, denoted
as rectangles, arcs that connect states and transitions but
never states with other states or transitions with other
transitions, and tokens with color, i.e., attributes with
values. Arcs carry inscriptions in CPN-ML expressions
that evaluate to a multiset or a single element. Modules
in CPN are non-atomic place-holder nodes for hierarchic
refinements that correspond to respective services in a
system-implementation.

During a contract lifecycle, obligations move through
stages of processing. According to the ontology classes
of Figure 3, those stages are inactive, active, performed,
delayed, defective and terminated. Additionally, there exist
the stages revised and unfulfillable, which is out of focus for
the automation of obligation processing. More precisely,
we discuss the respective stages below:

• inactive: When an agent has not taken an obligation
into consideration, i.e., the precondition of an obliga-
tion has not been met.

• active: An agent takes an obligation into consider-
ation, i.e., the precondition of an obligation is met.
That infers an obligor has to perform the related
action before the deadline passes.

• performed: The action has been carried out by the
obligor.

• delayed: The obligor has not carried out the action
before the agreed deadline. Delayed state presumes
that the amount of the action object in the obligation

3http://cpntools.org/

2018 International Joint Conference on Neural Networks (IJCNN)

Fig. 1. Informal properties of an obligation.

Fig. 2. Right-development micro-lifecycle.

Fig. 3. SAC-ontology class diagram.

is not delivered to the beneficiary, or is not delivered
in the sufficient amount.

• defective: The action object of an obligation is defec-
tive.

• terminated: The obligation can be terminated by a
fundamental breach, or by mutual agreement. No
further consideration of the obligation will take place.

Following the CPN model in Figure 4, when an obli-
gation is in the stages delayed, or defective, a contractual
agent starts reasoning about breaches to notify a collabo-
rating party about the rights to remedy breaches, or other
options for conflict resolution. In the delayed stage, the
action object of the obligation is not delivered before the

deadline passes, or is not delivered in the sufficient amount.
For example the rent is not paid, or is paid less than
required.

A defective distinction in Figure 4 shows monetary and
non-monetary obligations. A monetary obligation includes
a monetary action, while non-monetary obligation includes
an action with a non-monetary action object. For example,
the obligation to pay rent is a monetary obligation and the
obligation to transfer the possession of an apartment is a
non-monetary obligation. Only a non-monetary obligation
can enter into a defective obligation stage. The latter
requires the action object to lack the expected quality
compared to agreement. For example when the lessee
returns the possession of the apartment to the lessor
without the apartment being in the agreed condition. In
contrary to that, an obligation to pay rent cannot have
qualitative deficiencies, because rent as the action object
of the obligation has only quantitative features and does
not have any qualitative ones. Although being in the state
performed, the obligation can go to the state defective if
defects are discovered in the aftermath.

The obligation stages delayed and defective in Figure 4
initiate rights to the beneficiary of an obligation to claim
remedies. The delayed stage can initiate rights to claim
performance, late-payment charges for monetary obliga-
tions and a contractual fine for non-monetary obligations.
The defective stage can only be reached by non-monitory
obligations and it allows the beneficiary to claim repair,
or replacement while also being able to claim damages.

When the remedies in Figure 4 do not enable the
beneficiary to achieve the purpose of the obligation perfor-

2018 International Joint Conference on Neural Networks (IJCNN)

inactive

OBLIGATION

[NonMonetaryObligation, MonetaryObligation]

precondition
met/active

OBLIGATION

obligation
delayed

OBLIGATION

performed

OBLIGATION

right
active

RIGHT

obligation
defective

OBLIGATION

terminated

OBLIGATION

activate

perform
delayed

perform

delay
non-monetary

detect
defect

defective
performance

fundamental
breach of delayed
obligation occured

fundamental
breach of defective
obligation occured

delay
monetary

obligation

obligation

obligation

obligation

obligation

NonMonetaryObligation

obligation

[Claim_Performance,
Use_Custom_Right,
Claim_Contractual_Fine]

NonMonetaryObligation

NonMonetaryObligation

NonMonetaryObligation

NonMonetaryObligation
NonMonetaryObligation

obligation
obligation

obligation

MonetaryObligation

[Claim_Late_Payment_Charge,
Claim_Performance,
Use_Custom_Right]

MonetaryObligation

[Claim_Replacement,
Claim_Repair]

[Claim_Replacement, Claim_Repair]

Cancel_Contract

Cancel_Contract

NonMonetaryObligation

Fig. 4. Transaction processing of obligations.

mance, the obligation is fundamentally breached, resulting
in the obligation reaching the stage of terminated. This can
initiate the right for the beneficiary to cancel the contract.
The obligation can also be put into the stage terminated
at any time by the mutual agreement of the parties.

V. Interacting Contract Agents

The need emerges for employing SACs where smart
contracts are combined with smart objects such as Belief-
Desire-Intention (BDI) agents [2]. Jason4 is a platform for
the development of BDI-agent systems that incorporates a
reasoning cycle for interpreting and executing source code
in the agent-oriented programming language AgentSpeak.
The latter stems from logics programming and allows for
knowledge presentation in mathematical relations.

In Figure 5, we use a UML sequence diagram [20]
to show the SAC-automated establishment of a rental
contract in a smart housing setting for which we refer the
reader to [18] for details. Thus, in Figure 5 we assign a
fictitious public key number that comprises four characters
for readability. The three entities to the left represent a

4http://jason.sourceforge.net/wp/

contractual agent and two personal agents for the lessor
and lessee respectively. The fourth entity denotes the
blockchain into which events are registered. Furthermore,
we assume a smart-home scenario where the apartment has
four agents assigned, one for the smart lock and three for
the gas-, water- and electricity-smart meters respectively.

The sequence diagram in Figure 5 commences with
the contract agent sending a message to the lessee agent
about the obligation ob(dep) being active, meaning that
the deposit must be paid. Consequently, the lessee agent
performs the payment by invoking tx(dep, 7a30) to the
blockchain, i.e., the deposit is held by the contract agent.
Note that usually a deposit is paid to a lessor’s account,
which is problematic as the lessor has the exclusive control
over funds that he is not entitled to unless there is damage
done to the apartment. At times, the deposit is never
paid back to the lessee, even when the apartment is in
undamaged condition. Still, in the case of a contract-agent
wallet, the parties are forced to find a consensus about the
deposit.

The next message in Figure 5 is from the contract agent
to the blockchain for checking the unspent transaction
output UTXO(7a30) to assure the deposit is transferred
to the contract-agent wallet onto the blockchain. The
latter responds with a confirmation – result(bitcoinC 0.3) –
indicating the payment to the contract-agent’s public-key
address on the blockchain.

For the formation of the transfer-act of the smart
property, several types of information must be collected.
First, the contract agent sends an active obligation mes-
sage ob(pt) to the lessor agent for requesting pictures
of the apartment condition. The lessor agent responds
by delivering those pictures. Next, value-query messages
qu(value) are sent by the contract agent to the gas-, water-
and electricity agents respectively, who respond with send-
ing back the current smart-meter counts in result(value)-
messages. The latter are used by the contract agent in
combination with the pictures to generate the transfer act
that is subsequently recorded in the blockchain.

Next, the contract agent sends an active obligation
message ob(key) to the lessor agent who subsequently
sends another message order(transfer,31x7) to the smart-
key agent, i.e., the smart key to the apartment is now
usable by the lessee. Note that by using the blockchain
for smart-key assignment, it is possible to perform an
assignment to multiple persons and the lessor is aware of
their identity. Finally, the contract agent sends an active
obligation message ob(rentpay) to the lessee agent, after
which the latter sends a transaction tx(rent,03m6) to the
blockchain, i.e., the recipient of the first monthly rent
payment is the lessor.

The termination protocol for the apartment rental con-
tract in Figure 6 commences with the contract agent send-
ing an active obligation message ob(pic) to the lessee agent
who returns a set of pictures about the apartment con-
ditions. Next, the smart-meter values are requested with

2018 International Joint Conference on Neural Networks (IJCNN)

Fig. 5. Initiation protocol of contractual agents.

qu(value)-messages from the gas-, water- and electricity
agents respectively. The latter respond with result(value)-
messages from the respective smart meters. Assuming
the delivered pictures about the apartment condition are
accepted by the lessor, the contract agent invokes the
command act2(pic,value1,value2,value3). The generated
act2 is recorder into the blockchain and the contract
agent sends an active obligation message ob(key) to the
lessee agent, indicating the apartment smart key must be
returned to the lessor. Consequently, the lessee agent sends
a message order(transfer,03m6) to the smart-key agent.

The contract agent informs the lessor agent with the
message right(damage claim) that there should be a final
confirming check for possible damage compensation. We
assume in Figure 6 that no damage compensation occurs
and subsequently, the contract agent sends an active obli-
gation message ob(dep) to the lessor for indicating the
deposit must be paid back to the lessee. For that, the
lessor agent sends a transaction message tx(dep,31x7) to
the blockchain. Finally, the contract agent sends a check
command UTXO(7a30) to the blockchain, after which the
latter responds with the message result(-B0.3), i.e., the
deposit has successfully been returned to the lessee.

VI. Feasibility Evaluation

We show the high-level structure of the business-
collaboration language we call SAC-Language that is de-

rived from the research-driven and pre-existing eSourcing
Markup Language (eSML) [17] schema as a foundation.
SAC-Language is given in Extensible Markup Language
(XML) [3] to facilitate the building of distributed applica-
tions in Clouds [4].

Figure 7 shows the structure of the SAC-Language as a
SAC between collaborating parties, structuring the SAC-
Language content into the conceptual blocks Who, Where,
and What. Briefly, the Who block comprises constructs for
the resource definition and the data definition. Mapped
onto the running apartment-renting case, parts of the
resource definition are the housing company, the utility
smart meters, and related information. Note that BDI-
agents count as resources and are therefore defined with
an unique identifier and universal resource identifier (URI)
[11].

The Where block defines the business context in terms
of used business, legal, and geographical aspects are of
importance for the contractual relations of collaborating
parties. In the context of the renting case, we assume
Estonian jurisdiction holds. More concretely, the business-
context provisions comprise obligations and rights that are
assigned to concrete process tasks we explain below. The
legal context provisions allow for setting general terms and
conditions for a contract.

In the What block, the current adoption of a formal
process-specification language permits the use of control-

2018 International Joint Conference on Neural Networks (IJCNN)

Fig. 6. Termination protocol of contractual agents.

SAC-Language

Fig. 7. SAC-language structure.

flow patterns for business-process definitions that have
semantic clarity [16]. Note that the process definitions
comprises constructs for linking to the resource- and data-
definition sections of SAC-Language that are both based
on respective pattern collections [22], [21]. Furthermore,
life-cycle definitions [15] are for the business processes and
contained tasks.

Since the SAC framework is blockchain agnostic,
the mapping assures that heterogeneous organizational-
internal smart-contract platforms can be integrated cross-
organizationally. Thus, the life-cycle-mapping establishes
semantic equivalence between the life-cycles of the cross-
organizationally harmonized business processes and of
tasks from the opposing domains. Different labels of tasks
belonging to processes of opposing domains may be seman-
tically equal. To establish a semantic equality, the second
part of the mapping block focuses on the mapping of
task labels. The monitoring construct of Figure 7 specifies
how much of the enactment phase the service consumer
perceives. We refer the reader to [15] for further details.

For the running rental case, we give brief SAC-Language
code examples for obligations and rights. Listing 1 shows
an example for the obligation to pay monthly rent. We
assume the obligation has a name and unique ID, can
not be changed throughout the enactment of a SAC and
involves monetary units for the execution.

The state of the obligation in Listing 1 is enabled, i.e.,
the SAC enactment is at a lifecycle stage where the obli-
gation is active. Next, the parties of the obligations define
as a beneficiary the lessor. Note, we use the shrunk public
key number of the lessor wallet from Figure 5. The same
holds for the lessee who is defined as the obligor and must
pay the monthly rent. There is no third party involved in
this obligation. Following Figure 1, the obligation type is

2018 International Joint Conference on Neural Networks (IJCNN)

todo in that the lessee has to act by concretely paying the
rent.

Listing 1. Obligation example for paying monthly rent.
10 <obligation_rule tag_name =" monthly_rent"
11 rule_id ="0001" changeable ="false"
12 monetary ="true">
13 <state >enabled </state >
14 <parties >
15 <benficiary >Lessor (31x7)</beneficiary >
16 <obligor >Lessee (03m6)</obligor >
17 <third_party >nil </ third_party >
18 </parties >
19 <obligation_type >todo </ obligation_type >
20 <precondition >
21 act1(signed)&key(transferred)
22 <precondition >
23 <action_type >
24 payment (03m6 ,31x7,rent)
25 </action_type >
26 <action_object >
27 rent(monthly ,amount)
28 <action_object >
29 <rule_conditions >
30 month(lastday)
31 </rule_conditions >
32 <remedy >
33 late_payment_interest(amount ,03m6 ,31x7)
34 </remedy >
35 </obligation_rule >

As a precondition for the obligation in Listing 1, the
act1 must be signed by the lessor and lessee while the
latter must have access to the smart key for being able to
move into the apartment. The action type is the payment
from the wallet of the lessee to the lessor that constitutes
the type rent. Additionally, and conforming to Figure 1,
the action object is defined as the rent with the qualifiers
it must be serviced monthly for a specific amount. The
rule condition is that the rent payment must occur on
the last day of a month. Finally, a reference is inserted in
the obligation that a remedy for late rent payment exists
where the lessee must transfer a defined monetary amount
to the lessor.

The right in Listing 2 comprises intersecting specifi-
cation elements with an obligation. As pointed out in
Section II, the main difference with an obligation is the
the beneficiary may waive a right. We assume in the right
example of Listing 2 the hypothetical case the lessee has
broken a television for which the lessor is the owner.

The right is again defined by a corresponding name
and ID. As the lessor has the right to waive the right
e.g., in case the lessee convinces the lessor the television
damage is not her fault even when no evidence exists, the
right can be changed on the fly and the compensation is
set to false as the expectation is a full replacement of
the object. The right is in the lifecycle state enabled for
immediate enactment and the parties are similarly defined
as in Listing 1.

Corresponding to Figure 2, the type of the right is set to
claim pertaining to the lessor over the lessee for a replace-
ment of the broken television. The assumed precondition
is again that act1 is signed and the smart-key handover to

the lessee took place. The action type is a replacement of
the television that is defined as an object by brand,type
and serial number.

Listing 2. Right example for replacing a broken televsion.
10 <right_rule tag_name =" TV_replacement"
11 rule_id ="0002" changeable ="true"
12 monetary ="false">
13 <state >enabled </state >
14 <parties >
15 <benficiary >Lessor (31x7)</beneficiary >
16 <obligor >Lessee (03m6)</obligor >
17 <third_party >nil </ third_party >
18 </parties >
19 <right_type >claim </right_type >
20 <precondition >
21 act1(signed)&key(transferred)
22 <precondition >
23 <action_type >
24 replace(tv)
25 </action_type >
26 <action_object >
27 tv(brand ,type ,serial_number)
28 <action_object >
29 <rule_conditions >
30 deadline(date)
31 </rule_conditions >
32 <remedy >
33 late_replacement_interest(amount ,31x7)
34 </remedy >
35 </right_rule >

We assume that the replace() command must be con-
firmed via mobile phone by the lessee with a photo showing
the television being delivered to the mobile phone of the
lessor. The obligation in Listing 2 also has a certain date
set as a deadline for the television replacement. Otherwise,
the lessee must again service a remedy payment of a
certain amount to the wallet of the lessor.

VII. Conclusion

This whitepaper presents a novel cross-organizational
blockchain-agnostic framework for peer-to-peer collabo-
ration. Novel blockchain technology enabled smart con-
tracts, combined with intelligent multi-agent systems yield
so-called self-aware contracts that allow for a high de-
gree of automation for such peer-to-peer collaborations.
Since existing blockchain-based solutions lack essential
constructs for specifying legally binding, machine-readable
contracts, we pragmatically formalize obligations and
rights with an ontology. For processing obligations and
rights, a high-level state-transition automata in Colored
Petri Nets shows the processing semantics involving a
blockchain that assures event traceability. Important is
that the self-aware contracting language constitutes a
high-level, cross-organizational, declarative way of formu-
lating self-aware contracts that are human readable and
comprise specifications of obligations and rights, which
are mapped onto organization-internal smart-contract
transaction-processing platforms.

We discover that the combination of belief-desire-
intention agents together with the declarative SAC-
Language yields self-aware contracts where the former

2018 International Joint Conference on Neural Networks (IJCNN)

assure as a combined set trusted information is channeled
into contract-based collaborations. That way, agents cre-
ate a composed oracle. In addition to employing agents
that provide a degree of artificial intelligence in a col-
laboration, human manageability of the self-aware con-
tract framework we achieve by providing a declarative
smart-contract language that specifies cross-organizational
contract-collaborations. This SEC-Language is based on a
pre-existing language that results from an EU-project for
initially automating cross-organizational production pro-
cesses. The SEC-Language provides extensions by adopt-
ing human-readable specifications for obligations and
rights, which are core concepts for lawyers to establish
traditional contracts for legal viability. Additionally, an
intuitive user interface allows for assembling self-aware
contracts with building blocks for subsequent parameteri-
zation. We recognize that by involving agents, it is possible
to process events off-chain and on-chain. That way, we
achieve a fine-tuned load balancing where only important
events are stored in the blockchain for non-repudiable
traceability.

As future work, we aim to develop a mapping from
SEC-Language obligations and rights to lower-level so-
called smart contract languages such as Soldity that op-
erate directly on blockchain platforms. Furthermore, we
investigate a scalable agent-based solution for solving the
Oracle problem pertaining to blockchains where a scalable
approach assures trusted information is channeled into a
self-aware contract collaboration. Important is that the
Oracle must be self-healing in that on-the-fly modifications
of its constituents are possible in cases of malevolent
agent behavior, or contextual changes. Relevant for user
adoption is also the design of intuitive graphical user
interfaces that allow for laymen such as lawyers, business
people, and so on, the development of specific contracts
based on human readable templates.

Bio

Alex is an associate professor5 at TTU.ee and has writ-
ten the whitepapers for the ICOs of Qtum.org, Agrello.org,
Everex.io, CEDEX.com, Datawallet.io, Evareium.io, and
more to come.

References

[1] Pleszka K. Araszkiewicz, M., editor. Logic in the Theory
and Practice of Lawmaking. Springer Publishing Company,
Incorporated, 1 edition, 2016.

[2] R.H. Bordini, J.F. Hübner, and M. Wooldridge. Programming
multi-agent systems in AgentSpeak using Jason, volume 8. John
Wiley & Sons, 2007.

[3] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and
F. Yergeau. Extensible markup language (xml). World Wide
Web Journal, 2(4):27–66, 1997.

[4] V. Butterin. A next-generation smart contract and decentral-
ized application platform, 2014.

[5] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang.
Hermit: An owl 2 reasoner. Journal of Automated Reasoning,
53(3):245–269, 2014.

5https://tinyurl.com/Alex-Norta

[6] P.A. Hamburger. The development of the nineteenth-century
consensus theory of contract. Law and History Review, 7(2):241–
329, 10 2011.

[7] R. Hull, V.S. Batra, Y.M. Chen, A. Deutsch, F.F.T. Heath III,
and V. Vianu. Towards a Shared Ledger Business Collabora-
tion Language Based on Data-Aware Processes, pages 18–36.
Springer International Publishing, Cham, 2016.

[8] F. Idelberger, G. Governatori, R. Riveret, and G. Sartor. Eval-
uation of Logic-Based Smart Contracts for Blockchain Systems,
pages 167–183. Springer International Publishing, Cham, 2016.

[9] Kurt Jensen, Lars Michael, Kristensen Lisa Wells, K. Jensen,
and L. M. Kristensen. Coloured petri nets and cpn tools for
modelling and validation of concurrent systems. In International
Journal on Software Tools for Technology Transfer, page 2007,
2007.

[10] L. Luu, D.H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making
Smart Contracts Smarter. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’16, pages 254–269, 2016.

[11] L. Masinter, T. Berners-Lee, and R.T. Fielding. Uniform re-
source identifier (uri): Generic syntax. 2005.

[12] Business Process Model. Notation (bpmn) version 2.0. Object
Management Group specification, 2011. http://www.bpmn.org.

[13] O. Morten. How firms overcome weak international contract
enforcement: repeated interaction, collective punishment and
trade finance. Collective Punishment and Trade Finance (Jan-
uary 22, 2015), 2015.

[14] M.A. Musen. The protégé project: A look back and a look
forward. AI matters, 1(4):4–12, 2015.

[15] A. Norta. Exploring Dynamic Inter-Organizational Business
Process Collaboration. PhD thesis, Technology University Eind-
hoven, Department of Information Systems, 2007.

[16] A. Norta and P. Grefen. Discovering Patterns for Inter-
Organizational Business Collaboration. International Journal of
Cooperative Information Systems (IJCIS), 16:507 – 544, 2007.

[17] A. Norta, L. Ma, Y. Duan, A. Rull, M. Kõlvart, and K. Taveter.
eContractual choreography-language properties towards cross-
organizational business collaboration. Journal of Internet Ser-
vices and Applications, 6(1):1–23, 2015.

[18] A. Norta, A. Vedeshin, H. Rand, S. Tobies, A. Rull, M. Poola,
and T. Rull. Self-aware agent-supported contract management
on blockchains for legal accountability. URL: http://whitepaper.
agrello. org/Agrello Self-Aware Whitepaper. pdf, 2017.

[19] T. Roxenhall and P. Ghauri. Use of the written contract
in long-lasting business relationships. Industrial Marketing
Management, 33(3):261 – 268, 2004.

[20] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling
Language Reference Manual, The (2Nd Edition). Pearson
Higher Education, 2004.

[21] Nick Russell, Arthur HM Ter Hofstede, David Edmond, and
Wil MP van der Aalst. Workflow data patterns: Identification,
representation and tool support. In Conceptual Modeling–ER
2005, pages 353–368. Springer, 2005.

[22] Nick Russell, Wil MP van der Aalst, Arthur HM ter Hofstede,
and David Edmond. Workflow resource patterns: Identification,
representation and tool support. In Advanced Information
Systems Engineering, pages 216–232. Springer, 2005.

[23] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and
J. Mendling. Untrusted Business Process Monitoring and Exe-
cution Using Blockchain, pages 329–347. Springer International
Publishing, Cham, 2016.

2018 International Joint Conference on Neural Networks (IJCNN)

