2016 IEEE 1st International Workshops on Foundations and Applications of Self-* Systems

From Institutions to Code: Towards Automated
Generation of Smart Contracts

Christopher K. Frantz

Otago Polytechnic
Dunedin, New Zealand
Email: christopher.frantzQop.ac.nz

Abstract—Blockchain technology has emerged as a solution to
consistency problems in peer to peer networks. By now, it has
matured as a solution to a range of use cases in which it can
effectively provide the notion of third party trust without the need
for a trusted (physical) third party, which makes it an attractive
coordination mechanism for distributed systems. To promote
the wide adoption of this technology, we yet lack mechanisms
that make the specification and interpretation of smart contracts
accessible to a broader audience. In this work, we propose a
modeling approach that supports the semi-automated translation
of human-readable contract representations into computational
equivalents in order to enable the codification of laws into verifi-
able and enforceable computational structures that reside within
a public blockchain. We identify smart contract components that
correspond to real world institutions, and propose a mapping that
we operationalize using a domain-specific language in order to
support the contract modeling process. We explore this capability
based on selected examples and plot out directions for future
research on smart contracts.

Keywords—blockchain; autonomy; distributed autonomous in-
stitutions; public ledger; smart contracts; Ethereum; Solidity;
institutions; institutional grammar; code generation; model-driven
development; domain-specific language; Bitcoin

I. INTRODUCTION

To date the most successful example of blockchain deploy-
ments is Bitcoin. Bitcoin uses public-private key cryptography,
consensus rules and incentive systems to achieve consen-
sus in an open distributed peer-to-peer system. Even though
discussions are generally associated with Bitcoin [1] as the
currently most prominent instance of blockchain technology,
the implications of blockchain technology reach much farther,
beyond digital currencies.

Whereas earlier blockchain applications concentrated on
the management of distributed state, the most modern
blockchain deployments, such as Ethereum [2], not only allow
the distributed management of state, but also the execution
of procedural instructions in the form of smart contracts.
Smart contracts reflect a notion of dynamically specified and
instantiated contracts that live on the blockchain, outside the
unilateral control of a single participant. The ability to express
logic within an open, trusted and verifiable peer-to-peer system
offers opportunities for individual users as well as corporations
to delegate parts of their activities into a public blockchain.
Examples include decision-making based on voting, crowd
funding, assets management or workflow management. How-
ever, the open nature of these mechanisms offers opportunities

978-1-5090-3651-6/16 $31.00 © 2016 IEEE
DOI 10.1109/FAS-W.2016.53

210

Mariusz Nowostawski

Norwegian University of Science and Technology
Gjgvik, Norway
Email: mariusz.nowostawski@ntnu.no

that reach beyond the conventional integration of information
systems or coordination of human actors. Smart contracts can
be likewise be used by artificial entities that autonomously
engage in contractual commitments, or create contracts to
offer services to an open audience. This further extends to the
potential use of the blockchain as coordination infrastructure
for collective adaptive systems (CAS), a) affording the struc-
tural heterogeneity of participating entities, b) accommodating
their globally distributed operation, and c) delegate life cycle
management of contracts to the collective itself, instead of
relying on humans to provide and maintain the infrastructure.

However, when interacting in an open environment, con-
tractual specifications should be accessible to all engaging
entities, whether artificial or human. While the blockchain
assures deterministic execution and consistent state repre-
sentations, the codified contracts as de facto coordination
protocols, still require careful design and implementation, and
cannot guard against badly written or insecure contracts, an
aspect recently witnessed in the massive theft of funds from
the Ethereum’s most successful Decentralized Autonomous
Institution (DAO) [3]. As with any programming task, the
human-readable contract and associated obligations need to
be codified, and then subsequently verified, to ensure that
the machine-readable representation conforms to the specified
behaviour. We believe that the complexity of codifying smart
contracts, and the necessity to do so correctly (since they
are publicly accessible), limits the mainstream adoption and
acceptance of this technology.

To leverage broader understanding of the functionality and
to make the creation of contracts accessible for the general use,
we propose a mechanism that semi-automates contract gener-
ation by translating institutional formalization from a human-
readable behaviour specification to a contractual structure in
the form of smart contracts. In Section II we briefly highlight
the technological underpinnings of the blockchain application
Ethereum and its notion of executable smart contracts. We
propose a component mapping for a widely accepted institution
representation onto structural elements of smart contracts,
before exemplifying this functionality for various coordination
problems in Section III. Finally, in Section IV we discuss
implications and the potential of the proposed approach.

II.

Up to now, we have used the term ‘contract’ largely intu-
itively without describing a contract’s structure and semantics
in the technological sense. We first discuss technical details of

FROM INSTITUTIONS TO CONTRACTS

IEEE
computer
® psouety



the Ethereum platform, before moving towards the structure
and capabilities of smart contracts.

A. Ethereum Virtual Machine

Smart contracts are executed on a specially designed
blockchain virtual machine, called Ethereum Virtual Machine
(EVM) [2]. The EVM is a stack-based virtual machine that
operates on bytecode language. All Ethereum nodes share
the same EVM specification, and the code is executed in
a distributed fashion across all the nodes that validate the
transactions. Program execution is always bound in time and in
space by the up-front provision of the consumable gas, a unit
of execution cost that is incurred by each opcode instruction,
and by each byte of storage utilized by the contract. Payments
underlie the same principle as in Bitcoin, but instead rely on
the denomination ether.

While Ethereum’s bytecode language is designed towards
efficient distribution and execution, a set of additional high-
level languages have emerged in order to simplify the cre-
ation of contracts. Those include Solidity, Serpent, and LLL,
with Solidity [4] being the de facto standard for contract
development. Solidity’s syntax is derived from Javascript, but
accommodates conceptual differences such as static typing.

B. Smart Contracts

Contracts correspond to classes in object-oriented lan-
guages and can hold typed state variables. Apart from general-
purpose types, such as string, integers, static or dynamic arrays,
found in traditional programming languages, a central type in
Solidity is the address that identifies users (EOAs) and other
contracts’ locations.

In addition, contracts can contain functions that are exter-
nally invoked. Function modifiers can further be attached to
one or more functions in order to perform preliminary checks
(e.g. for data validation) in a declarative manner, thus reflect-
ing characteristics of aspect-oriented programming [5]. The
EVM further supports events for the purpose of notification
or implementation of callbacks. Note that though the EVM
requires the execution of code on all connected nodes, it does
not support any form of parallelization as part of the code.
In addition to functions, Solidity supports structs as well as
enumerations. Within contracts code can access properties of
the invoking message, such as sender address, remaining funds
for function execution (gas), various crytographic functions as
well as a predefined selfdestruct() function for the destruction
of contracts. It is worth noting that in Ethereum the termination
of an object’s existence can only be achieved by the object
itself. The public nature of the blockchain makes a careful
development and life cycle management thus essential. The
complete language documentation can be found in the Solidity
specification [4].

To instantiate new contracts, they are compiled into EVM
bytecode and users must obtain sufficient amount of ether
to fund the execution of the contract based on the estimated
complexity of the submitted code. Transactions can then in-
voke functionality on the contract’s address. For this purpose,
Ethereum knows two types of transactions, consisting of the
essential attributes:

211

e  receiving address,

e included ether amount,

e a byte array containing the payload, and

e a signature of the sender account’s private key.

If the receiving address is omitted, the transaction payload
must be a new contract which is added to the network. Before
executing the transaction, the EVM will establish the authen-
ticity of transaction requests based on the sender’s signature,
and it will validate the attached ether needed to sponsor EVM
code execution.

Figure 1 depicts a contract extract that represents a simple
voting system. Upon creation (Constructor VotingSystem()) the
contract records the creator’s address (state variable owner).
It further maintains a set of mappings that capture voters
and the corresponding votes. Voters need to be registered
by the contract owner in order to participate (Function reg-
isterVoter()). Voters can then vote by invoking the function
vote(String vote) that takes their choice as parameter. The
call to vote() is preempted by two checks on corresponding
modifiers, that is voterExists() and voteOnce(). The remaining
evaluation functionality (e.g. determining the highest vote) is
omitted in this example. We further omitted infrastructural
functions that are not of direct relevance at this stage.

modifier voteOnce() {
if (voters[msg.sender].voted == 1)

contract VotingSystem { throw;

struct Voter { }
uint voted;
} function registerVoter(address voter) {
if (msg.sender != owner) {
address owner; throw;
mapping(address => Voter) voters;
mapping(string => uint) votes; voters[voter].voted = 0;
function VotingSystem() {
owner = msg.sender; function vote(String vote) voterExists voteOnce {
} if (votes[vote] != @) {
votes[vote] = votes[vote] + 1;
modifier voterExists() {
if (voters[msg.sender] == @)
throw;

voters[msg.sender].voted = 1;

} ... Result evaluation functionality & housekeeping ..

Figure 1. Example Contract for Voting (compact representation)

Note that contracts do not require the representation of
contractual obligations in the strict sense, but can, similar to
objects, be composed of elementary contracts that serve spe-
cific purposes, such as state-centric or logic-centric operations.
They can furthermore inherit properties from other contracts.

The use of high-level languages makes it relatively easy
to specify and encode smart contracts. However, it is worth
highlighting that the potential use of smart contracts as me-
diators in open systems makes them critical infrastructure.
This can apply to a single organization’s functioning, or to
governments and countries, if those were to adopt blockchain
technology and smart contracts to provide sensitive public
services, for example land ownership registers. If contracts
are ill-specified or exploitable, the implications can be far-
reaching. Furthermore, at the current stage few approaches
are available that support the systematic modeling of contracts
in order to resemble real-world institutions. In this work we
intend to bridge this gap by proposing a possible mapping
between institutional specifications made in human-readable
language and the machine-readable encoding in the form of
Solidity contracts.



C. Institutional Grammar

For this purpose we borrow a concept from the area
of institutional analysis [6] that deals with the systematic
analysis of functions of human institutions from a social and
economic perspective. In this context Crawford and Ostrom
have proposed a Grammar of Institutions [7] that captures
essential institutional characteristics. Using this representation,
it is possible to effectively decompose institutions into simple
rule-based statements that capture the essence of the insti-
tution’s function. Statements are constructed from different
components (abbreviated as ADICO) that include:

e  Artributes — describe an actor’s characteristics or at-
tributes.

e  Deontic — describes the nature of the statement as an
obligation, permission or prohibition.

o Alm - describes the action or outcome that this
statement regulates.

e  Conditions — describe the contextual conditions un-
der which this statement holds. If not specified, the
institutional statement holds under any circumstance.

e  Or else — describes consequences associated with non-

conformance.

Based on those individual components, we can specify
institutional statements of varying character that include one
or more of the above-mentioned components. For example a
prescription along with consequences for non-compliance can
be described as People (A) must (D) vote (I) every
four years (C), or else they face a fine (O).

This grammar has found application in the context of
policy-coding [8] as well as agent-based modeling [9].

We borrow the structure of Nested ADICO (nADICO) [10],
a refined variant of the original institutional grammar, to
decompose complex institutional functions into a simple set
of prescriptions that can be linked using the logical operators
and, or, and xor to express conjunctions, inclusive disjunc-
tions and exclusive disjunctions.

Using this structure, we can express majority-based voting
as a set of declarative rules, represented as combined institu-
tional statements:

e  People (A) must (D) vote (I) only once (C) AND

e  People (A) may (D) vote (I) if they are registered
voters (C) AND

e  People (A) must not (D) vote (I) after the deadline

(©).

In principle, we could further specify obligations associated
with the institutional functionality itself, such as

The contract (A) must (D) notify voters about the outcome
(I) once the deadline is reached (C).
D. Mapping Grammar Components to Contract Structure

Exploring the structural elements of contracts and the insti-
tutional grammar, we can identify the essential domain-specific

212

constructs, and propose a mapping that allows us to simplify
the generation of contracts. For example, the conceptual equiv-
alent to ADICO’s Attributes component is Solidity’s struct. In
analogy, aims effectively represent functions and events (which
we will explore further below), whereas the combination of
Deontic and corresponding Conditions component are reflected
in function modifiers that introduce declarative checks that
preempt function execution. Table 1 summarizes the proposed
ADICO-Solidity mapping.

TABLE 1. MAPPING OF ADICO COMPONENTS TO SOLIDITY

DECLARATIONS

ADICO Component Solidity Construct

Attributes Structs

Deontic Function modifiers

Aim Functions, Events

Conditions Function modifiers

Or else throw statements/alternative control flow

This mapping of core constructs provides the foundation
to translate institutional specifications into Solidity contracts.
However, in addition to the high-level mapping, we can refine
ADICO’s component structure. We introduce an open set of
properties attached to the Attributes component (i.e. actor
properties), which translate to Solidity struct members. We
further refine Aims (which represent the action an institutional
statement controls) by allowing the specification of object and
target associated with a given action, both of which correspond
to parameters for Solidity functions. A special case are events
that are triggered based on the fulfilment of encoded conditions
(e.g. reaching a deadline). A further refinement involves the po-
tential annotation of attributes’ property data types in order to
improve code generation. As an operationalization of ADICO,
Attributes can be explicitly specified, and we further permit
the specification of objects associated with actions as well as
potential targets of an action. Additionally, multiple conditions
can in principle be combined into a single statement. As
discussed in Section II-C, multiple ADICO statements can be
combined using logical connectors.

To clarify this mapping and exemplify its use, we have
developed a domain-specific language (DSL) using Scala [11]
that automates this process using a templating approach. The
syntax for the ADICO-Solidity DSL is shown in EBNF nota-
tion in Figure 2.

actor
prop

< <String literal> ; (* Attributes actor *)

(* Attributes property and
optional type definition *)

(* Deontic value *)

(* Aim action *)

(* Aim object *)

(* Aim target *)

(* Logical operators *)

& property(<String literal>[, <String literal>]) ;
deontic < “may” | “must” | “must not” ;
action < <String literal> ;
obj

tgt

10perator
condition

< object(<String literal>[, <String literal>]) ;
& target(<String literal>[, <String literal>]) ;
< “AND” | “OR” | “XOR” ;
< IF(<Boolean expression>) |
(condition lOperator condition) ; (* Individual condition or
condition combination *)
conditions ¢« condition {1lOperator condition} ; (* Conditions component *)
< ADICO(
A(actor[{, prop}l),
D(deontic),
I(action[, object][,
[, C(conditions)]
[, 0(adico)]) ;
statement & (adico {lOperator adico}) ;

adico

target])

(* Individual ADICO statement *)
(* Complete statement *)

Figure 2. ADICO-Solidity DSL Syntax

The associated algorithm involves the following steps:



1) It initially iterates over all institutional statements
associated with a given contract and aggregates all
properties associated with an attribute concept to
model a struct from those.

All conditions are extracted from statements to
form individual modifiers. The deontic component
(e.g. must, must not, may) inverts given conditional
statements. Or else statements are translated as con-
sequences for violating conditions in function modi-
fiers, using the throw primitive by default. Conditions
that are combined by disjunctions are represented
by a single modifier construct that delegates the
implementation of the semantics to the developer.
Functions are generated based on aim name and
properties that are used to construct the function
signature. Associated function modifiers (generated
in Step 2) are attached to the generated function.
Events are introduced for statements whose aims’
actions use the keyword ‘notify’.

2)

3)

4)

Based on these principles we can now decompose intuitive,
yet complex institutional operations into simple rules that
capture the peculiarities of concepts such as voting. Beyond the
introduced conceptual mapping, the translation from ADICO
statements to Solidity constructs operates on a syntactic level
and requires developers to add the actual semantics associated
with the specified functionality. However, the provision of a
contract skeleton offers two important benefits:

e [t separates the specification task from implementation
and thus provides a safeguard against omissions of
crucial functionality as part of the implementation
process.

e It allows modellers to specify institutional constructs

in a declarative form that is (a) accessible to in-
dividuals of varying, potentially even non-technical
background, and (b) allows the modeling on a fixed
intermediate level of abstraction, which is helpful
when conceptualising heterogeneous systems that are
characterised by open environments and thus changing
interaction partners.

In addition to supporting the systematic construction of
institutions from the bottom up, we can address challenges that
are specific to the smart contract implementation in Ethereum
in order to avoid pitfalls, such as maintaining control about
deployed contracts as well as to deal with malformed contract
invocations. In consequence, we can encode those directly as
part of the contract generation. We will explore the introduced
concept based on a set of examples.

III. EXAMPLES

A. Example 1: Voting with Result Notification

The following statements model a simple voting mecha-
nism that permits registered voters to cast their vote. This
specification further notifies another contract once a threshold
of voting participation is reached. The individual statements
decompose individual permissible actions and associated con-
straints: Voters need to be registered (Statement 1), may
only vote once (Statement 2), but may only vote prior to
a given deadline (Statement 1). Statement 3 describes the

213

notification of external accounts (i.e. another contract) upon
having collected a given number of votes. This statement
further exemplifies varying levels of detail regarding attribute
and condition specifications (e.g. optional provision of type in-
formation) and the use of syntactic sugar to generate machine-
parseable conditions (see Conditions component in Statement
3). However, naturally this comes at the expense of manually
refining contracts during implementation (e.g. types, machine-
parseable condition specifications).

Adico (

A("Voters"),
may) ,
"cast", object("vote", "string"), target ("candidate")),
IF ("voter", "is" , "registered") AND
IF ("vote", "before", "deadline"))) AND
Adico(

A("Voters"),

D (may) ,

I("cast", object ("vote",

C("only", "once")) AND
Adico (

A("System"),

D (must) ,

I("notify", object ("vote count"), target ("contract",

"address")),
C(IF ("votes.length",

D (
I(
C(

"string"), target ("candidate")),

Operator.>, "100")))

Figure 3 shows the corresponding generated contract, in-
cluding the generated event as well as associated function.
Similar to all other constructs, the specification of events can
be of limited accuracy, for example it omits type specifications.
As mentioned before, the contract implementation requires
manual refinement in order to reflect the required semantics.
To aid this process, all relevant constructs are annotated with
TODO labels. At this stage the generated contract skeleton
represents an interface that captures the contract’s purpose
on an abstraction level defined by the institutional statements,
without exposing implementation details.

In addition to the translation of individual statement com-
ponents into Solidity code artefacts, the generated code can
also consider aspect that are specific to contract implementa-
tions in Solidity, so as to safeguard the users and developers
from common pitfalls. This includes the specification of a
default method that captures transactions with invalid payload
to avoid unnecessary expenses on the part of the invoking
party. Another provision is to control the ability to manage
the life cycle of a contract by restricting the ability to destroy
a contract to the creating owner (see owner initialization in
constructor (AdvancedVotingSystem()) and function kill()).

B. Example 2: Escrow Service

As a second example we present a simple escrow service
that performs a trust role typically endowed to third parties
specialized in the mediation of transactions. With Ethereum
we can codify this functionality with transparency for both
involved parties. We will use this example to explore state-
ments of higher complexity, such as the consideration of
consequences.

The following statements characterise an escrow service
that requires the payment of funds prior to a deadline, or
otherwise releases the traded object (objectOfInterest) and
returns eventual (partial) funds to the original buyer as shown
in the first statement. This exploits the nesting capability of
the institutional grammar (combined nested consequences) in



contract AdvancedVotingSystem {
address owner;

struct Voters {
address voter;

A

// TODO: Review event specification
event notifyVoteCount(*Define type* voteCount, address contract);

function AdvancedVotingSystem() {
owner = msg.sender;

}

Ds
if (! voterIsRegistered)

throw; C&
y T o

modifier voteBeforeDeadline() {
// TODO: Check the condition
if (! votebeforedeadline)
throw;

Generated Event
Notification

}

modifier onlyOnce() {

// TODO: Check Whe_condition

if (! onlyOnce)
‘throw;

}
// TODO: Doublech€ck parameter type definttions for function notify
function notify(*Define type* voteCount, addre contract) voteCount$greater100 {

// TODO: Implement code to notify vote count fom{arget contractaddress
notifyVoteCount(voteCount, contract);

// TODO: Doublecheck parameter type definitions for function cast
function cast(String vote, *Define type* candidate) voterIsRegistered
voteBeforeDeadliné

// TODO: Implement code to cast vote for target candidate

// Capture malformed payload
function() {

throw;
}
// Destroys contract, but only if called by original creator of contract
function kill() {

if (msg.sender == owner)

selfdestruct(owner);

Figure 3. Voting Example with Result Notification

order to reflect complex institutional interdependencies, but, in
this case, to automate the generation of control flow.

The remaining statements indicate the release of object
and payment of seller if sufficient funds are deployed. For the
purpose of brevity we omit further essential aspects (that are
secondary in this context) such as prior registration of buyer
and seller from the statement specification as well as life cycle
management functions.

Adico(
A ("buyer"),
D (must),
I("pay", object ("funds")),
C("before", "deadline"),
O (Adico(
A("system"),
D (must),

I("release",
target ("seller",

object ("objectOfInterest"),
"address")))
AND
Adico (
A("system"),
D (must),
I("send",
target ("buyer",

object ("funds"),

"address")))
)

) AND

214

Adico (
A("system"),
D (must),
I("send",
target ("seller",

object ("funds"),
"address")),

C(IF ("msg.value", Operator.>=, "price"))) AND
Adico (

A("system"),

D (must),

I("release", object ("objectOfInterest"),
target ("buyer", "address")),
C(IF("msg.value", Operator.>=,

"price")))
The translation of these statements results in a contract
skeleton shown in Figure 4.

The operation on funds as a central economic resource
is a first-order entity in Ethereum. This allows us to encode
the operation of currency transactions, since those are tied to
individual accounts and are part of any transaction message,
which can be accessed via msg.value and sent by a call to the
corresponding target address (e.g. buyer.send(amount)). This
way we can nearly automate the generation of the modifier that
captures the consequences attached to failing to pay before a
given deadline (Modifier payBeforeDeadline()).

contract EscrowSystem {
address owner;

function EscrowSystem() {
owner = msg.sender;

}
. Seller and buyer registration ...

// TODO: Doublecheck parameter type definitions for function release

function release(*Define type* objectOfInterest, address buyer) {
// Implement code to release objectOfInterest to target buyer

}

modifier payBeforeDeadline() {
// TODO: Check the condition
if (! payBeforeDeadline) {
release(objectOfInterest, buyer);
buyer.send(funds);

else {

}
¥

// TODO: Doublecheck parameter type definitions for function pay
function pay(*Define type* funds) payBeforeDeadline
buyerIsRegistered sellerIsRegistered {
// TODO: Implement code to pay funds
}

modifier msgValue$greaterEqualsPrice() {
// TODO: Check the condition
if (! msg.value >= price)
throw;

}

// TODO: Doublecheck parameter type definitions for function release

function release(*Define type* objectOfInterest) msgValue$greaterEqualsPrice {
// TODO: Implement code to release objectOfInterest

¥

// TODO: Doublecheck parameter type definitions for function send
function send(*Define type* funds) msgValueg$greaterEqualsPrice {
seller.send(funds);

. life cycle management functions ...

Figure 4. Escrow Service with Expiry

Similarly, we can further automate the code generation for
the modifier that checks for sufficient payment. However, as
with the previous cases, the generated contract is far from
executable and requires revision by a developer. It nevertheless
captures essential institutional characteristics and prevents their
omission. A future direction is the systematic consideration of



Solidity-specific functionality in order to provide code stubs
that reach beyond the specification of the contract interface.

IV. SUMMARY, DISCUSSION & OUTLOOK

In this paper we have outlined the potential of blockchain
technology to coordinate interaction between independent en-
tities, such as humans, agents, etc. The central challenge
associated with a broader use is the unambiguous and correct
specification of smart contracts. In this context, the main
contribution is the introduction of a process that automates
the translation of institutional constructs into codified machine-
readable contractual rules. To achieve that, we have used a two
step process. First, we express human-readable institutional
rules, regulations, and laws in terms of ADICO statements that
capture high-level institutional semantics. As a second step,
those sentences are mapped and transcribed into Solidity, the
smart contract language of the Ethereum platform. The ability
to generate those smart contracts easily by human participants
with varying level of technological background makes this
technology accessible to groups that would otherwise not
participate in the use of the blockchain as a coordination tool.
On the other hand, the notion of smart contracts represents
an expressive modelling tool that can coordinate system in-
teraction on a high level of abstraction, while maintaining a
representation that is conceptually and syntactically accessible
to humans.

However, our approach to aid the translation of inter-
pretable contracts into codified institutional representations
does not exist in isolation. Pitt et al. [12] describe an approach
that is inspired by Ostrom’s institutional framework [6] and
uses event calculus to represent nested institutional rule sets
in self-organising systems. Similarly, da Silva Figueiredo et
al. [13] propose a generic description language that for-
malises the norm specifications comprehensively, similar to the
nADICO structure used in this work. At the current stage the
described approach exclusively concentrates on the operational
level of institutional rules; structural institutional regress in
the form of Ostrom’s meta-rules and constitutional rules (that
shape operational rules) is not considered. Modelling the
coordination of independent entities is an essential challenge in
the context of collective adaptive and self-organising systems.
To enabling the use of the proposed approach in the area of
distributed systems in general, and collective adaptive systems
in particular, this work minimizes any assumptions about
the interacting individuals (e.g. agents, humans, contracts,
services), other than requiring them to have access to shared
smart contracts. At the current stage we are not aware of
existing approaches that support the generation of contracts
as coordination mechanisms in blockchain technologies.

Future work. The currently generated smart contract
skeletons require considerable manual input to make them
executable. To further automate implementation steps, the DSL
should provide richer inference mechanisms that automate
the generation of state variables and associate those with
function implementations (e.g. inferring struct properties from
conditional statements).

Whether the practical use of DSLs is sufficient for non-
programmers to express contractual statements and to agree on
the contract semantics has to be explored further. One direction

215

is the generation of validation code based on a more detailed
intermediary representation of the ADICO rules and make use
of advanced Solidity-specific concepts.

The most interesting aspect for future work will be the
ability to achieve the reverse — that is, given a blockchain
contract, is it possible for humans or autonomous entities to
verify the actual contractual semantics and obligations? Is it
possible to generate ADICO-like institutional statements based
on the EVM machine code alone, without the availability
of a high-level language such as Solidity? We believe that
specifically this latter aspect will be central once (and if)
wide-spread adoption is reached, ideally to an extent that
the reuse of existing contracts becomes attractive. Addressing
these questions will clarify whether institutional statements
can serve as a vehicle to specify coordination mechanisms
for collective adaptive systems — whether smart contracts are
encoded by humans, or ultimately, by machines themselves.

REFERENCES

Satoshi Nakamoto.
2008.

Ethereum Team. A Next-Generation Smart Contract and Decentralized
Application Platform.  https://github.com/ethereum/wiki/wiki/White-
Paper. (known as ’Ethereum White Paper’), Accessed on: Ist May
2016.

Klint Finley. A $50 million hack just showed that the dao was all too
human.  http://www.wired.com/2016/06/50-million-hack-just-showed-
dao-human/, 2016. Accessed on: 1st June 2016.

Solidity. http://ethereum.github.io/solidity/. Accessed on: 1st May 2016.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Mehmet Aksit and Satoshi Matsuoka, editors,
ECOOP’97 — Object-Oriented Programming: 11th European Confer-
ence Jyvdskyld, Finland, June 9-13, 1997 Proceedings, pages 220-242,
Berlin, 1997. Springer.

[1]

Bitcoin: A peer-to-peer electronic cash system,

[2]

[4]
[5]

[6] Elinor Ostrom. Governing the Commons: The Evolution of Institutions
for Collective Action. Cambridge University Press, New York (NY),

1990.

Sue E.S. Crawford and Elinor Ostrom. A Grammar of Institutions. The
American Political Science Review, 89(3):582-600, September 1995.

Saba Siddiki, Christopher M. Weible, Xavier Basurto, and John Calanni.
Dissecting Policy Designs: An Application of the Institutional Grammar
Tool. The Policy Studies Journal, 39(1):79-103, 2011.

A. Smajgl, L. Izquierdo, and M. G. A. Huigen. Rules, Knowledge
and Complexity: How Agents Shape their Institutional Environment.
Journal of Modelling and Simulation of Systems, 1(2):98-107, 2010.

C. Frantz, M. K. Purvis, M. Nowostawski, and B. T. R. Savarimuthu.
nADICO: A Nested Grammar of Institutions. In G. Boella, E. Elkind,
B. T. R. Savarimuthu, F. Dignum, and M. K. Purvis, editors, PRIMA
2013: Principles and Practice of Multi-Agent Systems, volume 8291 of
Lecture Notes in Artificial Intelligence, pages 429—436, Berlin, 2013.
Springer.

[8]

[9]

[10]

[11] Ecole Polytechnique Fédérale de Lausanne (EPFL). The scala pro-
gramming language. http://www.scala-lang.org/. Accessed on: 1st May
2016.

Jeremy Pitt, Julia Schaumeier, and Alexander Artikis. Coordination,
conventions and the self-organisation of sustainable institutions. In
David Kinny, Jane Yung-jen Hsu, Guido Governatori, and Aditya K.
Ghose, editors, Agents in Principle, Agents in Practice: 14th Interna-
tional Conference, PRIMA 2011, Wollongong, Australia, November 16-
18, 2011. Proceedings, pages 202-217, Berlin, 2011. Springer.

Karen da Silva Figueiredo, Viviane Torres da Silva, and Christiano
de Oliveira Braga. Modeling Norms in Multi-agent Systems with
NormML. In Marina De Vos, Nicoletta Fornara, Jeremy V. Pitt, and
George Vouros, editors, Coordination, Organizations, Institutions, and
Norms in Agent Systems VI, volume 6541 of Lecture Notes in Computer
Science, pages 39-57. Springer, Berlin, 2011.

[12]

[13]



