
Received November 15, 2019, accepted December 23, 2019, date of publication January 6, 2020, date of current version January 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2964220

Approaching Non-Disruptive Distributed
Ledger Technologies via the Exchange
Network Architecture
EMANUEL PALM , ULF BODIN , AND OLOV SCHELÉN
EISLAB, Luleå University of Technology, 971 85 Luleå, Sweden

Corresponding author: Emanuel Palm (emanuel.palm@ltu.se)

This work was supported by the Productive 4.0 Project (EU ARTEMIS JU) under Grant 737459.

ABSTRACT The rise of distributed ledger technologies, such as R3 Corda, Hyperledger Fabric and
Ethereum, has lead to a surge of interest in digitalizing different forms of contractual cooperation.
By allowing for ledgers of collaboration-critical data to be reliably maintained between stakeholders without
intermediaries, these solutions might enable unprecedented degrees of automation across organizational
boundaries, which could have major implications for supply chain integration, medical journal sharing and
many other use cases. However, these technologies tend to breakwith prevailing business practices by relying
on code-as-contracts and distributed consensus algorithms, which can impose disruptive requirements on
contract language, cooperation governance and interaction privacy. In this paper, we show how our Exchange
Network architecture could be applied to avoid these disruptors. To be able to reason about the adequacy of
our architecture, we present six requirements for effective contractual collaboration, which notably includes
negotiable terms and effective adjudication. After outlining the architecture and our implementation of
it, we describe how the latter meets our requirements by facilitating (1) negotiation, (2) user registries,
(3) ownership ledgers and (4) definition sharing, as well as by only replicating ledgers between stakeholder
pairs. To show how our approach compares to other solutions, we also consider how Corda, Fabric and
Ethereum meet our requirements. We conclude that digital negotiation and ownership could replace many
proposed uses of code-as-contracts for better compatibility with current contractual practices, as well as
noting that distributed consensus algorithms are not mandatory for digital cooperation.

INDEX TERMS Digital negotiation, digital cooperation, digital contracts, smart contracts, distributed ledger
technology, blockchain, distributed consensus algorithms, business integration, digitalization.

I. INTRODUCTION
In the wake of Bitcoin’s [1] salient rise to prominence [2],
other kinds of Distributed Ledger Technologies (DLTs), such
as R3 Corda [3], Hyperledger Fabric [4] and Ethereum [5],
were created to make the same kind of technology useful
not only for cryptographic money, but also for many kinds
of contractual cooperation. Significantly, Bitcoin enables its
users to collectively maintain a tamper-proof ledger, without
having to trust in any authority. While the Bitcoin ledger
was designed for recording transfers of the Bitcoin currency,
ledgers are useful in many contexts where accountability
is important, such as when registering ownership transfers,
tracking task completions, or managing credits. By being

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

able to reliably maintain ledgers of collaboration-critical
data without trusted middle-men, these digital contract solu-
tions enable computers to autonomously initiate and react to
cross-organizational interactions, without significant risks for
fraud or other types of illicit behavior. In other words, these
newDLTs could enable unprecedented degrees of automation
across organizational boundaries, with all the economical
benefits that would be entailing. This potential has lead to a
surge of research interest, with recent works focusing on use
cases such as supply chain integration [6], medical journal
sharing [7], land ownership registration [8], among many
other compelling examples [9].

However, despite the notable appeal of the technology,
it has not yet seen any significant degrees of adoption [2], [9].
We believe this is caused primarily by the prevalence of three
disruptors, which are (1) contract models based on computer

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 12379

https://orcid.org/0000-0002-9865-8753
https://orcid.org/0000-0001-5408-0008
https://orcid.org/0000-0002-4031-2872


E. Palm et al.: Approaching Non-Disruptive Distributed Ledger Technologies

code, which we refer to as code-as-contracts, (2) distributed
consensus algorithms, as well as (3) latency, throughput and
other forms of performance issues [10]. In particular,
1) code-as-contracts disrupt existing contractual practices

by introducing languages that are foreign to the experts
now responsible for managing contracts, which makes
it difficult and costly to build up organizations that
are able to handle them. In addition, no solution we
know of allows for the contents of such contracts to be
negotiated or renegotiated digitally, which means that
they only digitize a smaller part of the collaborative
process. Furthermore, they inhibit the application of
national laws by making it hard to determine (A) who
would be responsible in case of programmingmistakes,
(B) whether or not a given code-as-contract has been
entered into lawfully, (C) the correspondence between
computer and legal languages, among other similar
issues [11]. Additionally, the use of

2) distributed consensus algorithms can disrupt prevalent
business practices by requiring groups of parties to
validate and vote each others’ interactions, even when
not directly affected by those interactions. We believe
that many organizations will regard this as unaccept-
able, as it could lead to their competitors retrieving
and taking advantage of data about their commitments.
Lastly,

3) performance issues, often directly related to distributed
consensus algorithms [10], inhibit use cases that would
require higher interaction throughput or lower latency
to be profitable or useful.

In this paper, we show how these disruptors can be
avoided via the application of our Exchange Network (EN)
architecture. In particular, the architecture describes how to
design cross-organizational systems that provide negotiation
and ownership as primary abstractions rather than function
invocations and state machine transitions. Consequences of
our design are (1) supporting code-as-contracts becomes
optional, (2) the negotiation of contract creation, amendment
and exceptions can be digitized, as well as (3) the concrete
type of used consensus model becomes non-essential, which
means that such can be chosen that is more compatible with
current business practices. To establish the adequacy of our
architecture, we first formulate six requirements for effective
contractual cooperation, after which we describe how our
own implementation of the architecture fulfills those require-
ments to a degree comparable to other DLTs.

The rest of the paper is organized as follows. In Section II,
we relay why this paper was written and mention prior art.
In Section III, we outline how existing DLTs (1) manage
without code-as-contracts, (2) seek compatibility with legal
institutions and (3) avoid disruptive consensus procedures.
In Section IV, we characterize contractual cooperation
and derive six requirements from that characterization.
In Section V, we describe the EN architecture, our implemen-
tation of it and an illustrative use case. In Section VI, we con-
sider how our EN implementation, R3Corda [3], Hyperledger

Fabric [4] and Ethereum [5] fulfill the requirements we
present in Section IV. Finally, in Sections VII and VIII,
we discuss the implications of our work and relay our
conclusions.

II. BACKGROUND AND PRIOR ART
This paper is written as part of the Productive 4.0 project,1

which is a multidisciplinary research effort aimed at making
industries more digital and interconnected. Important goals
of the project are (1) improved supply chain integration, (2)
enhanced product life-cycle management and (3) digitalized
production.2 The fulfillment of all three of these goals will
eventually require that contractual and financial assets can be
digitally represented and managed by, as well as transferred
between, the stakeholders of industrial value chains.

We have worked together with other project participants,
representing Volvo Group, SEB, NXP and other companies,3

to better understand the real-world circumstances in which
these cross-organizational systems would have to exist. One
of the fruits of this collaboration is the EN architecture, which
we presented previously in [12]. That first paper focuses on
the architecture itself, the implications of implementing it
with different consensus models, and how it could be used by
Volvo Trucks. However, it does not thoroughly present one
of our most significant findings, which is that the prevailing
code-as-contracts and consensus model, first popularized by
Ethereum [5], is not nearly as essential to digital contractual
collaboration as we perceive many to believe. To make this
case as rigorous as possible, we here reiterate some EN
concepts, give more details about our EN implementation,
as well as presenting an extensive qualitative analysis.

III. RELATED WORK
However, not all DLTs have the contractual, consensus or per-
formance issues we mention in Section I. Here, we consider
how others have avoided or addressed those issues.

A. DLTs WITHOUT CODE-AS-CONTRACTS
Bitcoin [1] provides a stack-based language called Script,4

limited to specifying programmatic spending conditions.
Cryptonite [14], originally created from the Bitcoin source
code, omits Script support completely to simplify the pruning
of older transactions from the blockchain it maintains. Both
of these systems facilitate counter-parts to electronic debit
cards, making their purpose and usage familiar to many, even
if they are slower and less deterministic [10].

However, the reason these systems are able to function
without code-as-contracts, or any other equivalent, is because

1 The project website is currently available at https://productive40.eu.
2 Amore exhaustive description of these three goals, or pillars, can be read

at https://productive40.eu/2019/07/10/three-pillars-parts-of-one-solid-wall.
3 A list of all partners is available at https://productive40.eu/stakeholders,

which includes the companies we refer to. We name key contributors to this
work in the Acknowledgments section, located towards the end of the paper.

4 As Script is not specified in the Bitcoin paper, interested readers might
want to consult [13], which contains a formal description of the language.
Note that we consider Script too limited to be a code-as-contracts system.

12380 VOLUME 8, 2020



E. Palm et al.: Approaching Non-Disruptive Distributed Ledger Technologies

they are application-specific and, consequently, do not need
to support more complex collaborations. The architecture and
implementation we present facilitate contractual cooperation
via negotiation and ownership exchanges, which we argue
could be practically equivalent to conventional contracts.

B. DLTs SEEKING LEGAL COMPATIBILITY
The Ethereum blockchain system claims to support Smart
Contracts [5], which were originally described by N. Szabo
in [15]. In the case of Ethereum, such a contract is a set
of computer instructions that are executed as decided by
the majority vote of the Ethereum network. A significant
limitation of such a system, however, is that the Ethereum
majority wields no other power than deciding what to append
to the immutable ledger it maintains. If anything bound to
an external domain, such as the physical world, is out of
order, the majority is unable to mitigate it without assistance.
For example, the majority is not able to detect whether sold
goods are being physically transported to their buyers. While
national legal institutions are available for trying and cor-
recting contractual deviations in other human domains, it is
currently unclear how and if such institutions will consider
smart contracts and their ledgers as evidence [11].

To improve compatibility with existing legal instances,
some distributed ledger systems allow for the association
of legal prose with their code-as-contracts. For example,
R3 Corda [3] allows its state objects, which encode the
intents of Corda’s transactions, to refer to both legal prose
and contract code. Such state objects are exchanged in accor-
dance with predefined patterns, referred to as flows, which are
defined in a programming language. Another related example
is the Ergo programming language of the Accord project [16].
The language facilitates the creation of contracts that are both
code-based and legal that can be executed by smart contract
systems, such as Hyperledger Fabric [4].

However, referencing or integrating legal prose is not the
same asmaking code-as-contracts optional. Both of these sys-
tems rely on domain models in which the state of a distributed
computer is updated through the execution of functions.
Consequently, the programming of states and functions
becomes critical to the formulation of their contracts. Further,
ensuring a contract is legally compatible should require that
each computer state can be mapped to legal rights and obli-
gations in such a way that any relevant third-party institution
can know the standing of each party.

In contrast, the architecture we propose in Section V-A
relies on a domain model of negotiated ownership exchanges.
Consequently, defining the implications of token ownership
becomes the primary concern of a contract maker, not the
programming of states or functions. Each token ownership
could be seen as symbolizing a set of rights and obligations,
which means that determining the legal standing of each
relevant party becomes an exercise of determining the owner-
ship history of each relevant token. While our domain model
perhaps could be extended by superimposing state machines
or any other code-as-contract capabilities, it is significant that

our system can be used without such capabilities. We assume
that a simpler system stands a better chance of being tried
successfully in national courts of law and receive business
adoption, for which reason it we deem it relevant to focus
primarily on essential functionality, however useful other
features may be.

C. DLTs AVOIDING DISRUPTIVE CONSENSUS MODELS
While the distributed consensus algorithms often employed
by blockchain systems and other DLTs may make them
practically resilient to certain kinds of attacks, it also makes
them expose sensitive information to network participants not
directly concerned [17]. Additionally, distributed consensus
can be a time or resource intensive activity, significantly
impacting interaction throughput and latency [10].

Instead of trying to mitigate these issues directly, R3 Corda
avoids them by not requiring a distributed consensus algo-
rithm to be used by normal nodes [3]. Consensus is reached
either between pairs of peer nodes, which does not necessitate
the use of complex algorithms, or within pools of notary
nodes, which do have to use distributed consensus algorithms.
Notary pools are tasked, when requested by normal nodes,
to ensure state objects cannot be consumed twice, which
ensures that transferable assets cannot be duplicated by send-
ing them to more than one recipient, among other things.
As the notaries only see the cryptographic hashes [18] of
the state objects they are given, they are unable to inspect
the data of the state objects they validate. Note that when
not dealing with assets that can be transferred multiple times,
notary nodes do not have to be used at all.

The system design we propose in Section V relies on
the same fundamental approach to consensus as R3 Corda,
by which we imply that interactions do not need to be relayed
through a network of reviewing voters and that ledgers are
replicated primarily between pairs of nodes.5

IV. CONTRACTUAL COOPERATION
How can one tell whether or not a given system adequately
and effectively facilitates contractual cooperation? To be able
to answer this question to a satisfying degree, we here present
a characterization of such contractual cooperation, as well as
a list of six requirement, formulated with that characterization
in mind.

A. CHARACTERIZATION
a) What is contractual cooperation? It is the coming

together of free agents into a joint undertaking, in which
each agent is incentivized to collaborate by it somehow
contributing to the fulfillment of the agent’s own goals or
ambitions. In other words, contractual cooperation takes

5 Due to the similarities between our implementation and R3 Corda, one
might wonder why we did not create it by writing a so-called CorDapp [3],
or by modifying the R3 Corda code base. The answer is that the code-as-
contract system of R3 Corda makes up a major part of its code base, and we
believe that replacing it or creating a layer on top of it would have introduced
more complexity than our from-scratch implementation required.

VOLUME 8, 2020 12381



E. Palm et al.: Approaching Non-Disruptive Distributed Ledger Technologies

place in a setting where different parties take advantage
of each other’s capabilities for the sake of promoting
the realization of their own distinct ends, which may or
may not be conflicting. The undertaking is formalized
by having each involved agent accept a contract, which
states what rights and obligations each participant will
have and how these can change.

b) What problems characterize such cooperation?More
than any other, we believe it to be uncertainty about
the incentives of the counter-parties. Cooperation takes
place in a volatile world where circumstances change,
suddenly or gradually. New competitors emerge, laws
change, and trends shift, which could make prices
drop, new markets become available, or existing busi-
nesses unprofitable. Such events might make any
counter-parties want to discontinue their involvement
or change their terms. Other potential problems may
include counter-parties being or becoming fraudulent,
incapable of fulfilling their roles, unaware of key
limitations, or leaking sensitive facts to competitors.

c) How are those problems mitigated? Through the use
of different kinds of risk aversion strategies. A common
such is ensuring misbehaving parties can be compelled
to conform or compensate its counter-parties, which can
be accomplished by agreeing on an adjudicator when
a contract is first accepted. Examples of such adjudi-
cators could include courts of law, private arbitration
firms or various kinds of member councils. A related
strategy is to prevent or disincentivize misbehavior by
letting trusted third parties act as mediators, controlling
sensitive exchanges or other interactions. When a DLT
relies on a distributed consensus algorithm, which we
take a critical stance towards in this paper, its user
base collectively forms a mediator that is guaranteed to
act only on the majority’s behalf. However, for such a
mediator to be effective, the majority must have enough
power to prevent all relevant kinds of misbehavior, as we
note may be problematic in Section III-B. Other possi-
ble strategies could involve the continual assessment of
trustworthiness, the use of insurance agreements, or the
concealment of significant facts from counter-parties
and competitors, which otherwise would be able to use
that information to the detriment of the concealing party.

B. REQUIREMENTS
Having established what contractual cooperation is, we now
proceed to formulate requirements we knowmust be satisfied
in order for a given system to support it effectively.6

1) Negotiable terms. Each agent joins a given undertaking
because it believes it to help it achieving its own ends.
To reach the point where all candidate agents consider a
potential cooperation as advantageous, there will likely

6 The list we present reflect what we considered most relevant to cover in
this paper. It is by no way complete. For example, we do not consider the eco-
nomic incentives of participation, message integrity guarantees, or having
reasonably synchronized clocks.

have to be room for its terms to be negotiated. Further-
more, as circumstances can change after a collabora-
tion has been formalized, there will likely have to be
room for those terms to be renegotiated later. In other
words, a system for effective contractual cooperation
should be able to support the negotiation of (1) contract
creation, (2) contract amendments and (3) contractual
exceptions.

2) Consistent interpretation. There must be some kind of
framework in place that guarantees that each contrac-
tual partner interprets the terms of the contract the same
way, especially considering what right and obligations
are associated with each party at every given instance.
Even if adjudicators can be asked to judge in case of
interpretations differing, as we consider further down,
it does not remove the need for interpretation to be suf-
ficiently consistent for collaboration to be possible to
begin with. In other words, a sufficiently well-defined
legal vocabularymust be shared before any contract can
be meaningfully commited to.

3) Interactional privacy. Knowledge about the activities
of one’s competitors is a significant means to improve
the effectiveness of one’s own business strategies. This
means that ensuring contracts and cooperations remain
concealed from competitors can be key to preventing
that information from affecting their competitiveness.
It could, for example, involve the obligation of each
party to not reveal certain facts about a contract, or the
use of cryptographic means to ensure messages remain
obscure to potential observers.

4) Provable acceptances. Being able to prove that an
agreement has taken place gives each party some power
over its counter-parties, in the case anyone would break
the terms of that agreement. Those proofs could, for
example, be used in a court of law, or be shown to others
to deter them from collaborating with the offender.
Note that with the term acceptance, we refer not only
to the signing of a contract, but to any interaction where
the contractual standings of two ormore parties change.
Such changes in standing may occur when contractual
clauses are fulfilled, such as by delivering a good.

5) Effective adjudication. Having access to adjudication
is paramount both because it may allow disputes to be
resolved and because it could deter any cooperating
parties from deviating from their obligations. However,
it requires that the adjudicator, whether it be a court
of law or anything else, is able to (1) access, inter-
pret and consider relevant evidence, as well as (2)
compel the party deemed at fault to make reparations.
This may require that a given agreement is considered
lawful by the adjudicator, which could, for example,
include proof that a voluntary offer and accept has taken
place [11]. If the adjudicator is a computer system,
such as a network of Ethereum [5] nodes, it must be
able to access whatever power is required to enforce its
judgements.

12382 VOLUME 8, 2020



E. Palm et al.: Approaching Non-Disruptive Distributed Ledger Technologies

6) Trustworthy identification. Contractual partners have
to be able to reliably determine if any received request
originated with their counter-parties or not, as a
means of avoiding fraud by malicious third parties.
Additionally, adjudicators need to be able to assert that
signatures, or other attestations, are authentic and refer
to legally relevant entities. In a technical setting, this
may involve being able to map legal entities to certain
kinds of cryptographic primitives, such as public keys.

V. THE EXCHANGE NETWORK ARCHITECTURE
Having established what contractual cooperation is, to a
workable extent, as well as some key requirements for
such a cooperation to be effectively executed, we are now
ready to describe how we believe the collaborative pro-
cess could be made digital. Concretely, we outline our
implementation-independent EN architecture,7 present how
we went about to implement it, and then describe a simpli-
fied use case, by which we demonstrate the utility of our
architecture.

FIGURE 1. EN components. Arrows point from the using to the used
component, which, for example, means that the NS makes use of both
the UR and EL components. Each component also provides some kind of
interface for eligible network members.

A. ARCHITECTURE OVERVIEW
An EN8 can be a monolithic or a distributed application,
facilitating a digital marketplace where well-known types of
assets can be negotiated about, exchanged, and proven to have
been part of past exchanges. More specifically, an EN facili-
tates coordinated changes to the owners of digital tokens, each
of which could be thought of as symbolizing certain rights or
obligations, such as the right of ownership, the obligation to
render a service to a certain other party, or the right to receive
payment for the fulfillment of a specific task. The architecture
consists of four primary components, illustrated in Fig. 1,
which are

1) the Negotiation Service (NS),
2) the User Registry (UR),
3) the Exchange Ledger (EL) and
4) the Definition Bank (DB).
Before presenting each of those components in turn,

we want to stress that we make no assumptions about how

7 See [12] for a more complete description of the EN architecture.
8 Inspired by the term social network, we chose the name Exchange

Network for our architecture. The name is intended to invoke the idea of an
ever-changing network of interacting actors, primarily concerned with the
negotiation and exchange of goods, services, or other values.

they store data or coordinate user interactions, as long as
data can be accessed and members interact. The components
fulfill abstract functions that can be realized in multiple ways.
However, we only describe one way of implementing the
architecture in this paper, which is intended to demonstrate
a non-disruptive approach to designing systems for digital
collaboration. In [12], we also consider how a blockchain
system like Hyperledger Fabric [4], or a common database
system like MySQL [19], could be used as implementation
foundations.

FIGURE 2. A naive state machine, illustrating how two negotiating parties
could progress from an initial proposal to an accepted and finalized such.

1) NEGOTIATION SERVICE
The NS allows the members of an EN to propose, accept
and reject exchanges of tokens, and submits any mutually
accepted exchanges to the EL component. While this could
be facilitated via FIPA00037 [20] or some other alternative,
we present our own protocol here. The benefits to having
our own protocol are largely educational, as it allows us to
present something less complex that can be easily understood
by researchers with many kinds of backgrounds. Concretely,
our protocol lets EN users negotiate by sending proposals
to each other. Each negotiation progresses through three
phases, (1) qualification, (2) acceptance and (3) finalization,
as depicted in Fig. 2 and described below.

1) Qualification. The first objective of a negotiation is to
find a qualified proposal believed to be acceptable to
each party. A qualified proposal is such that leaves no
room for ambiguity regarding who would own what
tokens if the proposal would be accepted (i.e. it is a
valid offer). The proposal is searched for by having the
negotiating members take turn in trying to formulate it.
If not enough information is had for a candidate pro-
posal to be qualified, an unqualified such may be used
instead. Unqualified proposals may refer to abstract
types of tokens, include choices, or identify undesired
tokens. To facilitate the communication required to
send these proposals, the Proposal message in Fig. 3
is provided.

2) Acceptance. As soon as one party formulates a quali-
fied proposal, the objective becomes to determine if the
counter-party deems it acceptable. After having sent
the qualified proposal, the counter-party either rejects

VOLUME 8, 2020 12383



E. Palm et al.: Approaching Non-Disruptive Distributed Ledger Technologies

FIGURE 3. The Proposal and Acceptance messages, with associated data
types. ID represents an arbitrary identifier type, question marks (?) are
used for optional values, while brackets ([]) are used to denote array
types.

it by sending a new counter-proposal, or accepts it
using the Acceptance message in Fig. 3. If rejected,
the negotiation returns to the Qualification phase.

3) Finalization.When a qualified proposal has been both
formulated and accepted, it is submitted by the NS
to the EL. The parties are notified when it is known
whether that submission succeeded or failed, after
which the negotiation returns to the Qualification
phase. If there is more to negotiate about, negotiation
continues. In any other case, the parties are free to
terminate the negotiation session.

2) USER REGISTRY
The User Registry (UR) is responsible for associating the
internal identity of each EN member with its external identi-
ties. An internal identity is an identifier used to refer to an EN
member within the system, such as in proposals, acceptances
or exchanges. External identities, on the other hand, is what
allows for members to recognize other members outside the
bounds of the EN. In whatever manner a givenUR component
is implemented, be it a database of x.509 certificates integrat-
ing with some public-key infrastructure [21] or something
completely different, it must be able to guarantee that the
identities of all members are trustworthy.

3) EXCHANGE LEDGER
The EL conceptually maintains an append-only ledger of
Exchange records, each of which consist of an Acceptance,
as depicted in Fig. 3, and any other data of relevance.
As a consequence, the EL can be used by EN members
to (1) determine if proposed or already finalized ownership

exchanges are sound, and (2) prove that past ownership
exchanges have taken place. Soundness can be determined by
ensuring the tokens of a proposal adhere to their tests, which
may include taking historic exchanges of relevance into
account. Soundness is described further in Section V-A.4.
The EN architecture makes no assumptions about how past
ownership exchanges are proven to have taken place, as long
as they can be. However, we consider one concrete way such
proofs can be facilitated when we consider our implementa-
tion in Section V-B.

4) DEFINITION BANK
The last component, the DB, defines the implications of
owning or creating every known type of token, especially in
terms of what may be done with them and any entities they
represent. A DB could be regarded as a dictionary, allowing
EN members to look up Definitions, as defined in Fig. 4,
by their names, hashes, or other identifiers.

FIGURE 4. Some proposed kinds of DB definitions. Our naive Contract
contains only Types, implying it could be useful for direct
machine-verification of contractual events if any of those Types would
refer to Tests.

Concretely, the purpose of maintaining definitions is to
ensure soundness can be verified for proposed and finalized
exchanges. Soundness is established by asserting that a given
exchange adheres to both internal and external regulations.
• Internal Regulation. These regulations, which we also
refer to as tests, ensure tokens cannot be abused inside
an EN. A test could be thought of as a function taking a
proposal, an EL and a DB as arguments, returning true
only if the proposal is sound. For example, tests could
limit the number of times a certain type of token can
change owner, restrict creation or ownership of specific
tokens to a fixed set of eligible members, or set expi-
ration dates after which some tokens may no longer be
exchanged. In other words, they could be used to prevent
some unsound ownership exchanges from taking place
at all.

• External Regulation. These exist to ensure any entities
represented by any EN tokens are not abused outside
the bounds of the EN. We refer to these regulations as
contractual terms, or just terms, and theymay ormay not
be machine-readable. For example, let us assume two
EN members have exchanged one token representing
the right to a vehicle repair for another representing a
promise of payment. At this point, there is no way for

12384 VOLUME 8, 2020



E. Palm et al.: Approaching Non-Disruptive Distributed Ledger Technologies

the EN itself to determine if any vehicle is repaired or
any payment is made, as these events happen outside
the computers of the EN. This could be mitigated by
ensuring the types referenced by the exchanged tokens
contain contractual terms, in the form of legal prose,
honored by some legal authority. As long as the finalized
exchange itself counts as proof, an appeal could be made
to that authority to resolve any disputes.

B. IMPLEMENTATION
While possible to implement an EN in many different ways,
we were particularly interested in doing so such that the
existing contractual paradigm could be preserved, as far as
reasonably possible. For this reason our implementation9

does not use any kind of distributed consensus algorithm,
and neither does it support any kinds of code-as-contracts,
even if we define machine-executable verification functions,
or tests, as part of the architecture in Section V-A.4. In fact,
our implementation is made from scratch. It is not built on
R3 Corda [3] or any other existing DLT solution. Concretely,
the implementation is intended to mimic the way common
paper contracts and other forms of signed instruments are
used, which are known only to two or more parties until
the event of a dispute, in which case those instruments are
revealed to a court of law or other adjudicator.

We begin the description of our implementation by giving
an overview of its design, including its user and application
interfaces, after which we describe the data structure it uses
to construct non-repudiable ledgers, and, finally, present a
limited scenario that our implementation can run.

1) DESIGN OVERVIEW
Our system consists of a node both serving a web client and
communicating with other nodes, as depicted in Fig. 5.

FIGURE 5. The general design of our EN implementation. Humans
operate each Node using a web browser Client. Every Node uses an
internal Server to both provide its Client with static HTTP(S) [22]
resources and send runtime data via WebSockets [23]. Each Node also
contains a Peer module, which is used to communicate with the Peer
modules of other Nodes over HTTP(S). The design requires no central data
repository or any centralization of control.

The business logic of both the node and the client it
serves are programmed in the TypeScript programming
language [24], which compiles to ECMAScript 2015 [25],
also referred to as JavaScript (JS), before execution. The JS of
the node is executed by the node.js runtime [26]. The visual
structure, styling of the client application are defined using
HTML [27] and CSS [28], respectively, and must be executed
via a web browser complying to the referenced standards.

9 Source code, as well as installation and evaluation instructions, are
available at https://github.com/emanuelpalm/en-signature-chains-poc. The
paper describes commit 694e3a73a1fbae67b9c106d47bd5a1.

FIGURE 6. The three columns of the client user interface, behind a dialog
in which a new proposal is formulated. The formulated proposal is a
request to a carrier to transport 300 components for 7200 SEK per
component, while giving the carrier the option of choosing between two
pick-up dates. The screenshot is taken from the demo application in the
implementation code repository. See Footnote 9 on page 12385 for
details on how to access the code and instructions for running the demo.
The scenario it illustrates is described in Section V-B.3.

The client, shown in Fig. 6, divides it user interface into
three columns, (1) User Registry, (2) Negotiation Service
and (3) Exchange Ledger, which correspond to three of the
EN components. The first column lists trusted user identities,
the second column allows sending and accepting proposals to
and from other users, while the third column lists all known
finalized ownership exchanges. A template token system is
provided as a form of naive DB component, which ensures
that created tokens follow configurable rules.

While human users communicate with their nodes using
web clients, the nodes themselves communicate with each
other by sending HTTP(S) requests to the endpoints outlined
in Table 1, which each node is expected to expose.

TABLE 1. HTTP(S) endpoints exposed by nodes via their Peer interfaces.

In particular, the node is designed such that if a sent pro-
posal includes a token containing a reference to a previous
exchange, it will automatically send that exchange before
the proposal. This means that finalized exchanges can be
distributed to third parties as proof that something has been
accepted by a third party. This is utilized in the example use
case in Section V-B.3 by a carrier, allowing it to prove to its
client that a delivery was accepted by its recipient.

Our implementation exists to fulfill three functions, (1) to
force us to confront and reevaluate the EN and SC concepts
during its development, the result of which is this paper,
(2) to confirm that our concepts are complete enough to be
implemented, as well as (3) to give us a tangible artifact to
demonstrate to industry experts in order to receive relevant
feedback. None of these three functions require having a
production ready system, for which reason we made some
important delimitations to reduce implementation effort. For
example, any UR and DB data must be provided at node
startup, and cannot be changed or added to during runtime.

VOLUME 8, 2020 12385

https://github.com/emanuelpalm/en-signature-chains-poc/tree/694e3a73a1fbae67b9c106d47bd5a11dc4b120a3


E. Palm et al.: Approaching Non-Disruptive Distributed Ledger Technologies

Even though messages between peers are signed and verified
cryptographically against known users, no communication
transports are encrypted. Client users are not authenticated or
authorized by their nodes. Finally, while HTTP endpoints are
provided for sending proposals, acceptances and exchanges,
there are no such for requesting exchanges, definitions, users
or other relevant data.

2) SIGNATURE CHAINS
To ensure that finalized exchanges can be proven to have
taken place, our implementation relies on data structures
that use signatures and hashes in a way comparable to
blockchains. However, as they do not gather records in
batches, we instead refer to them by the name Signature
Chains (SCs). Concretely, an SC consists of a chain of
records, each of which may refer to (1) a previous record and
(2) a definition of relevance. Each record is cryptographically
signed by one or more attestors, in our case a proposer and
acceptor, and any references to records or definitions are the
cryptographic hashes of the data referred to [18]. By implica-
tion, a third party given a chain of records, with any associated
definitions, becomes able to verify that the records

1) indeed have been signed by their attestors,
2) were created in a certain order, and
3) always have referred to the provided definitions.
Rather than SCs being stored in a centralized or replicated

repository, each possible pair of EN members may maintain
their own sets of chains, as depicted in Fig. 7. This leaves
room for every such pair of members to maintain privacy,
given that they can agree on not sharing their mutual records
with others. By implication, it also means that both members
of each pair can independently reveal any shared chain to any
party of interest, such as a court of law, partner, or other party.

FIGURE 7. The potential sets of SCs, or ledgers, in a six user EN.

To concretely implement the SC data structure, we amend
the Proposal and Acceptance types as described in Fig. 8.

As our particular implementation does not provide a DB
component, but a simpler template system assuming tokens
are defined elsewhere, the definition field of all Proposals is
always empty. This limitation is not critical for our purposes,
as we can assume that the set of used templates, and their
associated legal interpretations, are known beforehand by all
participants.

In the case of a fully implemented DB component being
available, however, then all definitions ought to refer to
their subdefinitions via their hashes. This would guarantee
that those definitions cannot be modified without it being
detectable. An example of a SC with definition references is
illustrated in Fig. 9.

FIGURE 8. Amended variants of messages first outlined in Fig. 3.

FIGURE 9. An example SC. Arrows denote references by hash. Assuming
that proposals and exchanges are signed, any party trusting the identity of
the signatures can verify that any associated definitions are not modified
since the proposal or exchange was signed. This requires, however, that
the verifying party can access referenced exchanges and definitions.

FIGURE 10. The six steps, taken by A and B, from the creation of a
qualified proposal to its acceptance and finalization. Circles denote
artifact creation, solid arrows artifact transmission and the dashed arrow
an internal transition. Both A and B must cryptographically verify the
artifacts they receive.

SCs are created or extended through a procedure of six
steps, beginning at the point where a Proposal is formulated
by some party A that will subsequently be accepted by its
receiver B. We describe the steps in Fig. 10 and below.

1) A creates and signs the qualified Proposal (pq).
2) A sends pq to B.
3) B creates and signs the Acceptance (ap) from pq.
4) B sends ap to A.
5) B puts ap and its hash into an Exchange (epa).
6) A puts ap and its hash into an Exchange (epa).

While a benefit to this procedure may be its lack of
complexity, it does have the following potential weaknesses.

• Acceptance asymmetry. A is unaware thatB accepted and
signed pq unless step (4) is completed successfully. If B
is malicious, it could perhaps be advantageous for B to
create ap while concealing it from A.

• Clock divergence. In certain scenarios, a pq may have to
be accepted within a certain time window. As each party
has its own clock, there could be diverging opinions on
whether or not an acceptance (ap) is timely.

12386 VOLUME 8, 2020



E. Palm et al.: Approaching Non-Disruptive Distributed Ledger Technologies

• Exchange malleability.While pq and ap are signed, e
p
a is

not. This gives room for both A and B to record whatever
private data they want to associate with ap in e

p
a, but it

also means that if epa is distributed, any fields other than
ap are malleable without it being noticeable.

• Token duplicability. In cases where tokens needs to be
transferable multiple times, it becomes possible for a
malicious party to transfer the same token to multiple
counter-parties without it being immediately detectable.
As information only is shared as strictly needed, it will
seem to both as if they now become the legitimate own-
ers of the new token, which, for example, could be tied
to the ownership of a physical good.

All of these weaknesses can be countered, however,
through different uses of trusted third parties. And if trusting
a single third party would be an issue, for reasons such as con-
cerns about trustworthiness, privacy or fault-tolerance, voting
networks of third parties could be a viable alternative.10 For
a concrete example of how a single trusted third party could
be used, consider the procedure in Fig. 11.

FIGURE 11. A variant of the steps described in Fig. 10. Here, a trusted
third party W is provided with the qualified proposal (pq) in step (3) and
the acceptance (ap) in step (5). If ap contains pq and seems to be valid,
W creates and signs a′

p in step (6) and then sends it to both A and B.

A trusted third party (W ) could assert the timeliness of
the acceptance (ap), ensure both A and B receive the signed
acceptance (a′p), as well as remember whether or not a token
part of a proposal has been transferred before.

One or more parties being witnesses of an exchange could
also have desirable contractual implications. For example,
an insurance agency being a witness, and thereby be given
the opportunity to ratify an exchange, could be used as a
way of ensuring the insurance agency remains commited to
some prior insurance agreement. Another example could be
a situation in which some token is owned by multiple parties.
All parties except for the one initiating the transfer of the
token could be called upon as witnesses to ensure they all
ratify it being exchanged.

Before we continue, we want to note that the reason for our
showing the extended exchange protocol is to establish that
the EN architecture is able to facilitate the use of witnesses,
which we deem to be a critical requirement for many relevant
use cases. We do not claim that witnesses is a unique or
somehow special feature of either our architecture or our

10 This is effectively what R3 Corda achieves via their notary pools [3]
while preserving a significant level of privacy, as described in Section III-C.

implementation of it. Rather, many existing smart contract
systems, such as Ethereum [5], Hyperledger Fabric [4], and
R3 Corda [3], do support these kinds of setups by defining
them in their contract programming languages.

3) EXAMPLE USE CASE
As our implementation was designed to demonstrate the EN
and SC concepts, it comes with a set of files for running
an example use case.11 We here proceed to describe that
example scenario, as it gives another perspective on how our
implementation is designed to work. The example consists of
six interactions between three partners, as described below
and in Fig. 12, using the tokens in Fig. 13.

FIGURE 12. The six steps of the example use case. Solid arrows
represent sent proposals, while dotted arrows represent sent proposal
acceptances.

The goal of the following interactions is to have certain
components manufactured and delivered from a Supplier (S),
via a Carrier (C), to a Final Assembly Plant (A).

1) Component order. A sends a proposal to S, wanting a
component order of 200 units, which are to be delivered
at a certain date. In return, A offers a tentative payment
of 100 000 SEK per component.

2) Transport booking. S sends a proposal to C , wanting a
transport booking for the components and the delivery
time requested in (1). In return, S offers a tentative
payment of 7 800 SEK per transported component.

3) Transport confirmation. C sends a proposal to A,
in which C requests that A confirms the transportation
in (2). When accepted by A, C proceeds to also accept
the proposal in (2), and S then accepts the proposal in
(1).

4) Transport Completion. C sends another proposal to A,
wanting A to confirm that the transportation accepted
in (3) has been completed, which is then accepted by
A.

5) Transport Payment Request. C then sends the exchange
finalized in (4) together with a proposal of payment

11 See Footnote 9 on page 12385 for a link to the source code repository,
which also contains detailed instructions for running the demo.

VOLUME 8, 2020 12387



E. Palm et al.: Approaching Non-Disruptive Distributed Ledger Technologies

FIGURE 13. Informal definitions of the token types used to facilitate the
example use case, with technical descriptions on the left and legal
implications on the right. Two of the tokens exist in two type variants
each, useful only to allow our implementation determine how to
automatically populate certain data fields. Compare with the Token type
definition in Fig. 3.

to C , in which C refers to the transport completion in
(4) and the tentative payment in (2). S accepts.

6) Component Payment Request. S, which now knows that
the transport has been completed, sends a proposal of
payment to A, which refers to the transport completion
in (4) and the tentative payment in (1). A accepts.

While the scenario illustrates how ordering, transport and
payments could be handled in an industrial scenario, there are
a few things we want to note.
• No actual payments were issued or executed by the EN
used by the three parties, even if several interactions
related to money. The purpose of the EN architecture is
to facilitate digital changes to the rights and obligations
between partners. It does not move any concrete assets
in and of itself, even if events in an EN could trig-
ger other systems to perform such functions. However,
the signed exchanges resulting from the example inter-
actions should be useful as evidence in a court of law,
in the case of any party not meeting its obligations, such
as by refusing to pay.

• The EN architecture only relays data that is directly
related to the rights and obligations of contractual
partners. If other information would be of relevance,
such as tracker coordinates or digital twins, that would
have to be sent via some other system.

• The example most likely contains too few steps to be
practical in a real-world setting. Pick-up, quality checks
or other significant interactions could likely be of benefit

to also negotiate about. The purpose, however, of the
example use case is demonstrate how the technology
works and how it could be used, not necessarily how it
should be used.

VI. REQUIREMENTS CONFORMANCE
In Section IV-B, we outline six requirements we believe to
be key for facilitating effective contractual cooperation. Here,
we briefly introduce and evaluate how (A) our SC implemen-
tation of the EN architecture (SC EN), (B) R3 Corda [3],
(C) Hyperledger Fabric [4], as well as (D) the original ver-
sion of Ethereum [5] meet our requirements, after which we
highlight the distinguishing characteristics of the evaluated
systems. The purpose of this section is to establish that our
strategy for implementing the EN architecture does fulfill
our requirements for effective contractual cooperation to a
degree that is comparable to other available solutions, even
if code-as-contracts and distributed consensus algorigms are
not used. A summary of our evaluations is given in Table 2.

A. SIGNATURE CHAIN EXCHANGE NETWORK (SC EN)
An SC EN is a peer-to-peer system for negotiation that
uses signatures and hashes [18] to make negotiation results
immutable and useful as proofs.

1) Negotiable terms. The EN architecture defines a kind
of system that, via its NS component, intrinsically is a
negotiation system. However, a NS can only fulfill it
purpose if there are token definitions that can be used
to formulate proposals. As definitions dictate what can
be negotiated about, there could, theoretically, be room
for negotiating about further definitions, the creation of
new contracts, the amendments of existing contracts,
as well as contractual exceptions.

2) Consistent interpretation.Every ENmust provide a DB
component, which is intended to maintain definitions
of sufficiently rigorous interpretation for negotiation to
be practically possible. No particular shape or format
is required for any such definitions, even though it may
be relevant to support machine-executable validation
code and conventional legal prose,12 as it could enable
both automatic proposal verification and provide
opportunity for adjudication via existing institutions,
respectively.

3) Interactional privacy.We understand complete privacy
to be the situation in which only those parties that must
know a fact do have direct or indirect knowledge of
it. While the EN architecture itself does not regulate
how proposals are relayed, concrete realizations of the
architecture, such as our SC EN implementation, could

12 While it currently may be advantageous to use traditional legal prose
in digital cooperation systems to ensure compatibility with legal institu-
tions, there are tangible benefits to be able to represent it in a directly
machine-readable format. It could, for example, allow for machine-assisted
contract analysis and verification, which could be used to estimate risks,
economical benefits and other relevant factors. OASIS LegalRuleML [29] is
one example of an already existing document structure, intended to facilitate
machine-readable legal contracts.

12388 VOLUME 8, 2020



E. Palm et al.: Approaching Non-Disruptive Distributed Ledger Technologies

TABLE 2. An overview of how our EN implementation based on SCs, R3 Corda, Hyperledger Fabric and Ethereum fulfill the requirements we list in
Section IV-B, as well as some technical characteristics of each solution. Parentheses are used signify functionality that can only be supported if provided
via an external means.

use transport layer security [30], or any other com-
parable technology, to conceal data in-transit between
parties. Furthermore, since using SCs does not require
a distributed consensus algorithm, there is not necessar-
ily any voting procedure during which any details about
proposals or exchanges could be seen by third parties.

4) Provable acceptances. The SC data structure facilitates
provable acceptances by requiring each acceptance to
be cryptographically signed both by its proposer and
acceptor. Additional parties can also add their signa-
tures or act as witnesses, given a suitable finalization
protocol. We describe such a protocol that includes one
witness in Section V-B.2. If an acceptance includes
hashes of a related earlier acceptance or contractual
definitions, no party will be able to deny the history
of the acceptance or the commitments associated with
it, given that the history and definitions are available to
be inspected.

5) Effective adjudication. The EN architecture leaves
room for using machine-executable tests, which could
be used to prevent some unsound exchanges from tak-
ing place. Neither ENs in general or SC ENs in particu-
lar are, however, able to correct contractual misbehav-
ior after it has occurred, which we discuss further in
Section VII-B. That being said, the SC data structure
is designed to be useful for proving that the agree-
ments it records have taken place. That proof, which
consists of the cryptographic signatures of well-known
stakeholders and hash-based references to contractual
definitions, we hope to be useful as evidence in tradi-
tional courts of law, which should be able to provide
the desired kind of correction.

6) Trustworthy identification. The problem of reliably
identifying other users is meant to be solved by the UR
component of all ENs. However, the EN architecture
does not explicitly specify how it is to be facilitated. In
our SC EN concept implementation, we use data taken
from x.509 certificates [21] to identify parties, which
we manually provide to each node. An implementation
for production usage would, however, likely need to

support distribution of certificates at runtime, handle
parties transitioning to new certificates, as well as being
able to assess the likelihood of any certificates being
compromised.

B. R3 CORDA
Corda [3] is a peer-to-peer system for multi-organizational
state machine applications, or CorDapps, which are updated
via signed [18] and logged function invocations.

1) Negotiable terms. Corda is not a negotiation system,
it is a system for maintaining and updating replicated
state machines via distributed function invocations.
In other words, it does not provide any primitives
explicitly designed for making or accepting proposals,
as defined in this paper. The details of any collaboration
must be negotiated outside Corda itself, including how
and what can be negotiated about in each given collab-
oration. That being said, there could likely be room for
building a general-purpose negotiation system on top of
the primitives Corda does provide. However, providing
a programming language and execution runtime is not
the same as providing a concrete feature, for which
reason we do not consider Corda to directly facilitate
negotiable terms here.

2) Consistent interpretation. In order to guarantee that
code-as-contracts and other machine-readable artifacts
are interpreted consistently, Corda comes with its own
machine language interpreter. It also leaves room for
its transactions to refer to legal prose and other attach-
ments. If such legal prose is formulated in accordance
with the norms of somewell-established legal tradition,
it could provide compatibility with legal institutions.

3) Interactional privacy. R3 Corda guarantees privacy
by encrypting messages in-transit between parties.
Notary pools, when used, are only providedwith hashes
of state objects, as described briefly in Section III-C,
which means that the contents of any considered
objects are not accessible to the notaries in any given
pool.

VOLUME 8, 2020 12389



E. Palm et al.: Approaching Non-Disruptive Distributed Ledger Technologies

4) Provable acceptances. In R3Corda, each cooperational
interaction results in the creation of a transaction,
which contains a list of input state objects, commands
to apply to those objects, as well as other details. Each
such transaction proves its validity by including at
least the signature of its issuer. Transactions can be
configured to hold additional signatures as needed via
the CorDapps that define them. Pools of notary nodes,
which we describe briefly in Section III-C, can also be
used as a form of witnesses.

5) Effective adjudication. The fact that Corda maintains a
replicated state machine means that it leaves plenty of
opportunity for programmatically validating states and
state changes, which is useful for preventing unsound
state transitions from taking place. However, Corda
does not in and of itself provide any direct means for
correcting contractual misbehavior that cannot be pre-
vented. Rather, Corda depends on its code-as-contracts,
transactions, immutably referenced legal prose, and
any other artifacts, to be accepted as evidence by a court
of law or other adjudicator.

6) Trustworthy identification. To guarantee non-
repudiation and to unambiguously associate transac-
tions with the identities of existing legal entities, Corda
employs x.509 certificates [21]. Further, it ‘‘assumes
[the existence of] an identity infrastructure between the
participants in the network but makes no assumption
as to its sophistication or mode of operation’’ [3].
However, if participating in the global Corda network,
a network maintained by the R3 organization, the use
of a custom infrastructure created by R3 is mandatory.

C. HYPERLEDGER FABRIC
Fabric [4] is a ‘‘distributed operating system’’ for replicating
state machines within groups of peer nodes using traditional
distributed consensus algorithms. Updates take the form of
signed [18] and logged function invocations.

1) Negotiable terms. Negotiation is not supported unless
designed via the code-as-contracts system it provides.

2) Consistent interpretation. Code-as-contracts, referred
to as chaincodes, can be specified in multiple dif-
ferent programming languages, all of which provide
well-defined execution or interpretation models. Fabric
does not directly provide any legal language support.

3) Interactional privacy. While not explicitly mentioned
in [4], we see no reason why Fabric would not be
able to encrypt messages in-transit between computers.
Furthermore, as the consensus groups, or channels,
of Fabric can be adjusted to only include directly
related parties, it can also be ensured that messages are
not seen by parties not immediately concerned.

4) Provable acceptances. In Fabric, transactions, which
encode all interactions, are signed by their issuers
before being submitted to the so-called endorsing
peers of a relevant consensus group, or channel. Each
such peer that considers the transaction valid signs it.

If all signaturesmandated by the so-called endorsement
policy of the channel are added to the transaction, it is
eventually appended to the ledger replicated within that
channel. The signatures prove that each interaction was
accepted by all parties of concern.

5) Effective adjudication. Fabric can prevent unsound
transactions from taking place by letting users specify
validation rules in its code-as-contracts. It does not,
on the other hand, directly support embedding legal
prose into its transactions, but can support it indirectly
via a system such as the one by the Accord project [16].

6) Trustworthy identification. Fabric provides a so-called
membership service provider for verifying the identi-
ties of all computers interacting with a given system.
The identities are connected to legal entities via
certificates.

D. ETHEREUM
The original version of Ethereum [5] maintains a globally
replicated state machine that is updated via signed [18] and
logged function invocations. As the system is global and
maintained voluntarily, it incentivizes maintenance by host-
ing a cryptocurrency that is used to reward maintainers and
charge for contract execution. The consensus model and cur-
rency of Ethereum are comparable to those of Bitcoin [1].
1) Negotiable terms. Negotiation is not supported unless

designed via the code-as-contracts system it provides.
2) Consistent interpretation. Ethereum requires that all

contracts be provided in the same byte code format,
which guarantees that all network participants interpret
the contracts in the exact same way. No legal contract
language is provided directly, as we alreadymentioned.

3) Interactional privacy. Neither transactions or contracts
are encrypted or concealed in any way. The reason for
this is that all network maintainers must be able to
verify that each transaction takes the contract it invokes
into a valid state. Furthermore, Ethereum does nothing
to conceal public keys, which means third parties able
to associate public keys with legal entities become able
to track all of their activities.

4) Provable acceptances. Ethereum, which also repre-
sent interactions by transactions, only requires that
the issuer of each transaction signs it. However, code-
as-contracts can be designed to require additional
approvals before executing its clauses.Whenever a new
transaction is submitted for ledger inclusion, it is asso-
ciated with a so-called proof-of-work, which functions
as an indirect proof that the majority of the network
considers it to be valid [1], [5]. However, for the reasons
we outline and discuss in Sections III-B and VII-B, this
form of global validation is more limited than it may
initially seem.

5) Effective adjudication. While able to prevent some
unsound transactions from taking place via its
code-as-contracts system, embedding legal prose into
contracts is not explicitly supported. Such could,

12390 VOLUME 8, 2020



E. Palm et al.: Approaching Non-Disruptive Distributed Ledger Technologies

however, likely be superimposed on the primitives it
does provides.

6) Trustworthy identification. Participation is allowed
without explicit membership registration. Public keys,
without any other data, are considered to be valid user
identifiers. While no explicit association between pub-
lic keys and legal entities is made, there is no technical
reason such could not be stored outside of Ethereum.

E. DISTINGUISHING CHARACTERISTICS
We hope that reading the requirements analyses in this
Section helped establish how similar these four solutions
are, in terms of our requirements. In particular, they all use
cryptography to prove acceptances, support programmatic
verification of interactions, provide, or could theoretically
provide, some kind of means of establishing legal identities.
Their differences largely come down to their (1) contract
languages and (2) consensus scopes, as follows:

1) Contract language. The SC EN system provides a
negotiation-ownership model, while the others support
code-as-contracts. While technically different, both
help establish which parties have what rights and obli-
gations at every given instance of a cooperation. The
difference between these two approaches are not their
theoretical capabilities, but the domain models that
must be worked with to make them operational. Our SC
EN solution requires formulating what token owner-
ships imply what rights and obligations, while the other
require writing state machine applications in program-
ming languages.

2) Consensus scope. Ethereum operates globally, rather
than within closed groups of participants as the other
three. While a global scope might allow for support-
ing novel and interesting use cases, it makes it harder
to facilitate privacy when interactions are sensitive.
Fabric, on the other hand, does allow its channels to
include only parties of interest. However, as all parties
of concern have to be part of the channel while inter-
acting, it offers less flexibility than R3 Corda and our
SC EN, which do not directly superimpose any notion
of groups.

VII. DISCUSSION
We have now considered what contractual cooperation is, key
requirements for it to be effective, the EN architecture and
SC implementation, as well as how our implementation and
the other DLTs fulfill our requirements. Here, we discuss the
wider implications and weaknesses of our contributions.

A. IS NEGOTIATION A SUFFICIENT ABSTRACTION?
Throughout this paper, we have assumed that negotiation
about token ownerships to be an adequate abstraction for
representing most kinds of contractual cooperation. As the
notion of ownership maps well to the notion of owning rights
or obligations, we assume our model can replace most uses

of conventional contracts, which we, in turn, assume to be an
adequate vehicle for most kinds of collaboration. However,
the positionwe take can be argued to require stronger assump-
tions than the prevailing code-as-contracts model. As pro-
gramming languages can be Turing complete, they can also
be able to simulate all other domain models, including the
one we present. But if our assumption about the adequacy of
our negotiation-based model is sufficiently correct, it offers
less complexity than the prevailing model, which could serve
to reduce costs by leaving less room for error and by requiring
less skills to be utilized.

B. THE PROSPECT OF MACHINE ADJUDICATION
In this paper, we identify distributed consensus algorithms
and code-as-contracts as primary obstacles to compatibility
with existing adjudicators, such as national courts of law.
Those two technologies are, however, what many envision
will allow trusted middle-men, among which courts of law
are a primary example, to be fully circumvented. However,
apart form disrupting current practices, as we already noted,
the concrete systems currently using these technologies do
have some additional shortcomings. In particular, they are
limited in

1) what they can consider as evidence,
2) their power over parties deemed at fault, as well as
3) their ability to take the wider context into account.

In systems like Bitcoin [1] or Ethereum [5], the only
unbiased evidence available is signed transactions, the only
available punishment is refusing to append transactions to the
maintained ledger, and no given data will be considered in
terms of its original domain or context. Taken together, this
means that these systems are unable to identify or mitigate
transactions sent to fraudulent users, for example, even if they
are able to detect double-spending, overspending, and so on.
Strides of advancement in AI technologies, in areas such as
trust assessment, faction mapping and computational ethics
would be required in order to make computer systems begin
approaching the capabilities of present day institutions. For
this reason, we assume that human adjudicators will remain
indispensable for many kinds of use cases in the foreseeable
future, even though the list of exceptions may grow as DLTs
allow for more kinds of middle-men to be circumvented.

C. A MINIMUM-VIABLE INTEGRATION STRATEGY
However useful the EN SC approach we present in this paper
may be, we have not considered the practical details of setting
up an operational system between multiple stakeholders. If a
minimum-viable solution is considered adequate, the follow-
ing five steps could be a workable starting-point.

1) Each party of the collaboration in question installs and
configures an EN SC software on a server it manages.

2) Cryptographic certificates are generated by each party,
and uploaded to the UR of every server.

3) Legal documents are scanned, hashed and uploaded to
the DB of each server.

VOLUME 8, 2020 12391



E. Palm et al.: Approaching Non-Disruptive Distributed Ledger Technologies

4) Key interactions defined by the legal documents are
identified, and tokens referring to them are specified.

5) A new legal document is signed by each participant,
containing their cryptographic certificates.

Essentially, finalized EN exchanges are used as digital
receipts referring to the terms of existing paper contracts.
If assuming that the EN SC software provides a graphical user
interface, no further technical integration would be strictly
required as humans would be able to manage all interactions.
Each party would be able to independently automate any of
the interactions in which it takes part.

D. THE ECONOMICS OF SYSTEM PARTICIPATION
It seems to us that participating in a digital collaboration
system always will require (1) installing, configuring and
connecting a node to a network; (2) reliably identifying the
user identities of any relevant counter-parties; as well as
(3) formulating and distributing contractual definitions. We
think that the complexity and costs associatedwith these three
steps will have significant impact on the real-world flexibility
and utility of these systems, even though that complexity
and cost may be hard to quantify. We argue that the lower
complexity of our ownership-based domain model, compared
to a Turing complete programming language, could yield
lower costs for formulating contracts, which would make
systems using the model more flexible in terms of being able
to change and enter into new collaborations.

E. CONSENSUS PERFORMANCE AND DISRUPTION
In Section I, we claimed that the performance of distributed
consensus algorithms could be a major disruptor. While no
benchmarks are presented in this paper, we want to note
that the theoretical performance of the implementation we
propose in Section V-B should be excellent, as it assumes
consensus will be sought primarily between pairs of nodes.

F. THE LIMITED QUALITY OF DLT WHITE-PAPERS
It seems to us as if the tradition within the distributed ledger
community is to present technical findings and solutions
in white-papers. Apart from the textual and factual issues
that would not have been present in case of serious peer-
reviews, these white-papers often seem to be vague about
technical limitations, perhaps for marketing reasons, and be
updated infrequently. Consequently, we cannot guarantee the
accuracy of our findings to the extent that otherwise would
have been possible. Despite this, we see no significant risks of
our most important claims, such as those about the adequacy
of our negotiation-based model, being compromised by any
technical details about these solutions being incorrect.

G. RIGHTS AND OBLIGATIONS AS STATE MACHINES
Even though we present the Exchange Network concept as
facilitating negotiation about token ownership, via the use
of an abstract message protocol, there is nothing preventing
that a computational model be superimposed on that protocol.

Concretely, tokens refer to types, which in turn refer to tests
and terms, as described in Section V. One could regard a
test as an invariant of a type system, a term as a function
body, a type as a full function declaration, and a token as a
function invocation. As tokens have room for arbitrary data
items, they could even be said to include function arguments.
If taking this perspective, finalized negotiations result in
functions updating a state machine of rights and obligations.
Even though this does not imply Turing-completeness, it does
suggest that there could be interesting mathematical parallels
between the code-as-contracts model and the one we propose.
Formally defining such a state machine and comparing it to
the state-of-the-art is left as a topic for future research.

VIII. CONCLUSION
In this paper, we make the case that code-as-contracts and
distributed consensus algorithms disrupt common business
practices. We also claim that those disruptors can be replaced
by a system of negotiated token exchanges and non-mediated
message passing. By substituting the prevailing finite state
machine code-as-contracts model with one of negotiations
about ownership exchanges, we change the primary concern
of themodel from function invocations and state transitions to
exchanges of rights and obligations. By using cryptographic
signatures and hash pointers, akin to R3 Corda [3], we ensure
messages sent directly between two peers can be proved to be
authentic later to third parties.

We believe existing professionals, such as procurement
engineers, legal experts and adjudicators, will be able to
fruitfully apply the kind of technology we propose with little
training, given that the right kind of supporting software
will exist. Writing software is far removed from what most
relevant kinds of professionals are accustomed to, and the use
of voting to ratify interactions is rare in conventional kinds of
collaboration. However, digital signatures, ownership state-
ments, as well as the other primitives our system design
provides, should be perceived as more familiar and, therefore,
require less training, as well as requiring fewer adaptations
to existing business norms and practices. If the assumptions
we make are correct, our approach lowers the barriers to
adoption of distributed ledger technologies for businesses,
legal institutions and others in comparison to state-of-the-art
solutions, such as Hyperledger Fabric [4] or R3 Corda [3].

That being said, there might be compelling use cases that
cannot be facilitated by our approach. For example, solutions
such as Ethereum [5] are able to facilitate code-controlled
agents via a public and global process reminiscent of voting,
which can be used to circumvent traditional third parties in
certain situations. Our current understanding is that noth-
ing similar could be achieved with the system design we
propose, at least without extending it to also support defin-
ing the behavior of and facilitating such agents. However,
the practical utility of such agents has proven very limited,
as we discuss in Section VII-B, which means that they cannot
replace many interesting third parties to an adequate degree,
such as inspection firms or courts of law.

12392 VOLUME 8, 2020



E. Palm et al.: Approaching Non-Disruptive Distributed Ledger Technologies

In Section IV-A, we characterize cooperation as being the
process of collaborating parties continuously renegotiating
their current sets of rights and obligations, while never being
absolutely sure about the aims and incentives of their counter-
parties. If nothing else, we believe this paper should establish
that digital cooperation systems must be able to represent the
contentious nature of this process to remain useful over time.

ACKNOWLEDGMENT
We would like to thank Richard Hedman at Volvo Group
for his insights regarding industrial supply chains. We would
also like to thank Caroline Berg von Linde, Johan Hörmark,
Christian Lagerkvist and JamieWalters at SEB for helping us
better understand the utility of trusted middle-men.

REFERENCES
[1] S. Nakamoto. (2008). Bitcoin: A Peer-To-Peer Electronic Cash System.

Accessed: Feb. 8, 2019. [Online]. Available: http://bitcoin.org/bitcoin.pdf
[2] M. E. Peck, ‘‘Blockchains: How they work and why they’ll change the

world,’’ IEEE Spectr., vol. 54, no. 10, pp. 26–35, Oct. 2017, doi: 10.1109/
mspec.2017.8048836.

[3] M. Hearn. (2016). Corda: A Distributed Ledger. Accessed: Feb. 22, 2119.
[Online]. Available: https://www.corda.net/content/corda-platform-
whitepaper.pdf

[4] E. Androulaki et al., ‘‘Hyperledger fabric: A distributed operating system
for permissioned blockchains,’’ in Proc. 13th EuroSys Conf.-EuroSys,
2018, pp. 30:1–30:15, doi: 10.1145/3190508.3190538.

[5] G. Wood, ‘‘Ethereum: A secure decentralised generalised transaction
ledger,’’ Ethereum Project Yellow, vol. 151, pp. 1–32, Apr. 2014, [Online].
Available: http://gavwood.com/paper.pdf

[6] S. S. Arumugam, V. Umashankar, N. C. Narendra, R. Badrinath,
A. P. Mujumdar, J. Holler, and A. Hernandez, ‘‘IOT enabled smart logistics
using smart contracts,’’ in Proc. 8th Int. Conf. Logistics, Informat. Service
Sci. (LISS), Aug. 2018, pp. 1–6, doi: 10.1109/liss.2018.8593220.

[7] L. Chen, W.-K. Lee, C.-C. Chang, K.-K.-R. Choo, and N. Zhang,
‘‘Blockchain based searchable encryption for electronic health record shar-
ing,’’ Future Generation Comput. Syst., vol. 95, pp. 420–429, Jun. 2019,
doi: 10.1016/j.future.2019.01.018.

[8] U. M. Ramya, P. Sindhuja, B. B. Dharani, S. S. M. V. Golla, and
R. A. Atsaya, ‘‘Reducing forgery in land registry system using
blockchain technology,’’ in Advanced Informatics for Computing
Research. Singapore: Springer, 2018, pp. 725–734, doi: 10.1007/978-
981-13-3140-4_65.

[9] F. Casino, T. K. Dasaklis, and C. Patsakis, ‘‘A systematic literature review
of blockchain-based applications: Current status, classification and open
issues,’’ Telematics Informat., vol. 36, pp. 55–81, Mar. 2019, doi: 10.
1016/j.tele.2018.11.006.

[10] A. Chauhan, O. P. Malviya, M. Verma, and T. S. Mor, ‘‘Blockchain and
Scalability,’’ in Proc. IEEE Int. Conf. Softw. Quality, Rel. Secur. Compan-
ion (QRS-C), Jul. 2018, pp. 122–128, doi: 10.1109/qrs-c.2018.00034.

[11] M. Giancaspro, ‘‘Is a ‘smart contract’ really a smart idea? Insights from a
legal perspective,’’ Comput. Law Secur. Rev., vol. 33, no. 6, pp. 825–835,
Dec. 2017, doi: 10.1016/j.clsr.2017.05.007.

[12] E. Palm, O. Schelén, U. Bodin, and R. Hedman, ‘‘The exchange network:
An architecture for the negotiation of non-repudiable token exchanges,’’ in
Proc. IEEE 17th Int. Conf. Ind. Inform. (INDIN), to be published. [Online].
Available: http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74043

[13] R. Klomp and A. Bracciali, ‘‘On symbolic verification of bitcoin’s
script language,’’ in Data Privacy Management, Cryptocurrencies and
Blockchain Technology. Cham, Switzerland: Springer, 2018, pp. 38–56,
10.1007/978-3-030-00305-0_3.

[14] J. D. Bruce. (2014). The Mini-Blockchain Scheme. Accessed:
Mar. 20, 2019. [Online]. Available: http://cryptonite.info/files/mbc-
scheme-rev3.pdf

[15] N. Szabo, ‘‘Formalizing and securing relationships on public networks,’’
First Monday, vol. 2, no. 9, Sep. 1997, doi: 10.5210/fm.v2i9.548.

[16] The Smart Legal Contract Stack, Accord Project LLC. Accessed:
Feb. 25, 2019. [Online]. Available: https://www.accordproject.org

[17] K. Christidis and M. Devetsikiotis, ‘‘Blockchains and smart contracts for
the Internet of Things,’’ IEEE Access, vol. 4, pp. 2292–2303, 2016, doi: 10.
1109/access.2016.2566339.

[18] A. Salomaa, Public-Key Cryptography (Texts in Theoretical Computer
Science), 2nd ed. Berlin, Germany: Springer, 1996, doi: 10.1007/978-3-
662-03269-5.

[19] C. Bell, Introducing the MySQL 8 Document Store. New York, NY, USA:
Apress, 2018, doi: 10.1007/978-1-4842-2725-1.

[20] FIPA Communicative act Library Specification, document FIPA 00037,
Foundation for Intelligent Physical Agents,May 2019. [Online]. Available:
http://www.fipa.org/specs/fipa00037

[21] D. Cooper, Internet X.509 Public Key Infrastructure Certificate and Cer-
tificate Revocation List (CRL) Profile, document RFC 5280, Internet
Request for Comments, May 2008, doi: 10.17487/RFC5280.

[22] R. Fielding and J. Reschke, Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing, documnet RFC 7230, Internet Request for
Comments, 2014, doi: 10.17487/RFC7230.

[23] I. Fette and A. Melnikov. The WebSocket Protocol, document RFC 6455,
Internet Request for Comments, Dec. 2011, doi: 10.17487/RFC6455.

[24] G. Bierman, M. Torgersen, and M. Abadi, ‘‘Understanding typescript,’’
in Proc. Eur. Conf. Object-Oriented Program. Berlin, Germany: Springer,
2014, pp. 257–281, doi: 10.1007/978-3-662-44202-9_11.

[25] A. Wirfs-Brock, ECMAScript 2015 Language Specification, docu-
ment ECMA-262, ECMA International, 2015. [Online]. Available:
http://www.ecma-international.org/ecma-262/6.0

[26] S. Tilkov and S. Vinoski, ‘‘Node.js: Using javascript to build high-
performance network programs,’’ IEEE Internet Comput., vol. 14, no. 6,
pp. 80–83, Nov. 2010, doi: 10.1109/mic.2010.145.

[27] S. Faulkner, A Eicholz, T. Leithead, A Danilo, and S. Moon. (2017).
HTML 5.2, W3C Working Draft. [Online]. Available: https://www.w3.
org/TR/2018/WD-html53-20180809

[28] T. Atkins and S. Sapin, CSS Syntax Module Level 3, document CR-css-
syntax-3-20140220, W3C Candidate Recommendation, Cambridge, MA,
USA, Feb. 2014. [Online]. Available: http://www.w3.org/TR/2014/CR-
css-syntax-3-20140220

[29] T. Athan, M. Palmirani, A. Paschke, A. Wyner, and G. Governatori,
‘‘LegalRuleML: Design principles and foundations,’’ in Reasoning Web.
Web Logic Rules. Cham, Switzerland: Springer, 2015, pp. 151–188, doi:
10.1007/978-3-319-21768-0_6.

[30] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3,
document RFC 8446, Internet Request for Comments, Dec. 2018, doi: 10.
17487/RFC8446.

EMANUEL PALM received the M.Sc. degree
in mobile systems from the Luleå University of
Technology, where he is currently pursuing the
Ph.D. degree. He has worked as an IT Consultant,
web developer and mobile application developer.
His master’s thesis was on understanding the
implications and impact of blockchain transaction
pruning, which lead to his current work on digi-
tal negotiation, ownership and contracts, and their
application within the industrial IoT.

ULF BODIN received the Ph.D. degree in com-
puter communications from the Luleå University
of Technology, Sweden, in 2003. He holds a posi-
tion as an Associate Professor at the Luleå Uni-
versity of Technology, where he is conducting
research on the industrial IoT, distributed system
of systems, computer communications, distributed
ledgers, and applied machine learning. His expe-
rience includes working in the software indus-
try and in ETSI and several other standardization
organizations.

OLOV SCHELÉN received the Ph.D. degree in
computer networking from the Luleå University of
Technology. He is currently anAssociate Professor
with the Luleå University of Technology and a
CEO with Xarepo AB. Thereafter, he has more
than 20 years of experience from industry and
academia. His research interests include mobile
and distributed systems, software orchestration,
computer networking, artificial intelligence, and
blockchain.

VOLUME 8, 2020 12393

http://dx.doi.org/10.1109/mspec.2017.8048836
http://dx.doi.org/10.1109/mspec.2017.8048836
http://dx.doi.org/10.1145/3190508.3190538
http://dx.doi.org/10.1109/liss.2018.8593220
http://dx.doi.org/10.1016/j.future.2019.01.018
http://dx.doi.org/10.1007/978-981-13-3140-4_65
http://dx.doi.org/10.1007/978-981-13-3140-4_65
http://dx.doi.org/10.1016/j.tele.2018.11.006
http://dx.doi.org/10.1016/j.tele.2018.11.006
http://dx.doi.org/10.1109/qrs-c.2018.00034
http://dx.doi.org/10.1016/j.clsr.2017.05.007
http://dx.doi.org/10.1007/978-3-030-00305-0_3
http://dx.doi.org/10.5210/fm.v2i9.548
http://dx.doi.org/10.1109/access.2016.2566339
http://dx.doi.org/10.1109/access.2016.2566339
http://dx.doi.org/10.1007/978-3-662-03269-5
http://dx.doi.org/10.1007/978-3-662-03269-5
http://dx.doi.org/10.1007/978-1-4842-2725-1
http://dx.doi.org/10.17487/RFC5280
http://dx.doi.org/10.17487/RFC7230
http://dx.doi.org/10.17487/RFC6455
http://dx.doi.org/10.1007/978-3-662-44202-9_11
http://dx.doi.org/10.1109/mic.2010.145
http://dx.doi.org/10.1007/978-3-319-21768-0_6
http://dx.doi.org/10.17487/RFC8446
http://dx.doi.org/10.17487/RFC8446

	INTRODUCTION
	BACKGROUND AND PRIOR ART
	RELATED WORK
	DLTs WITHOUT CODE-AS-CONTRACTS
	DLTs SEEKING LEGAL COMPATIBILITY
	DLTs AVOIDING DISRUPTIVE CONSENSUS MODELS

	CONTRACTUAL COOPERATION
	CHARACTERIZATION
	REQUIREMENTS

	THE EXCHANGE NETWORK ARCHITECTURE
	ARCHITECTURE OVERVIEW
	NEGOTIATION SERVICE
	USER REGISTRY
	EXCHANGE LEDGER
	DEFINITION BANK

	IMPLEMENTATION
	DESIGN OVERVIEW
	SIGNATURE CHAINS
	EXAMPLE USE CASE


	REQUIREMENTS CONFORMANCE
	SIGNATURE CHAIN EXCHANGE NETWORK (SC EN)
	R3 CORDA
	HYPERLEDGER FABRIC
	ETHEREUM
	DISTINGUISHING CHARACTERISTICS

	DISCUSSION
	IS NEGOTIATION A SUFFICIENT ABSTRACTION?
	THE PROSPECT OF MACHINE ADJUDICATION
	A MINIMUM-VIABLE INTEGRATION STRATEGY
	THE ECONOMICS OF SYSTEM PARTICIPATION
	CONSENSUS PERFORMANCE AND DISRUPTION
	THE LIMITED QUALITY OF DLT WHITE-PAPERS
	RIGHTS AND OBLIGATIONS AS STATE MACHINES

	CONCLUSION
	REFERENCES
	Biographies
	EMANUEL PALM
	ULF BODIN
	OLOV SCHELÉN


