
2017 IEEE International Conference on Big Data (BIGDATA)

978-1-5386-2715-0/17/$31.00 ©2017 IEEE 4255

1

Sustainable Blockchain-Enabled Services:
Smart Contracts

Craig Wright
nChain , London , UK

corresponding author: craig@ncrypt.com

Antoaneta Serguieva
nChain , London , UK
antoaneta@ncrypt.com

Abstract—This paper introduces some of the interdependent
components within the multifaceted solution our team is
developing towards accelerating the functionality, complexity
and versatility of blockchain-enabled services. The focus here is
particularly on introducing and bringing together selected
individual components of the solution to achieve a synergistic
effect in expanding the functionality of blockchain-enforced
smart contracts. The contributions of this paper include:
(i) proposing a method for automated management of contracts
with hierarchical conditionality structures through an
hierarchy of intelligent agents and the use of hierarchical
cryptographic key-pairs; (ii) proposing a method for efficient
and secure matching and transfer of smart-contract underlyings
(entities) among disparate smart contracts/subcontracts;
(iii) proposing a method for producing an hierarchy of common
secrets to facilitate hierarchical communication channels of
increased security, and applying this method both in the context
of method (i) and method (ii); and (iv) proposing the use of
distributed hash tables DHT in building secure and optimized
repositories in the context of method (i) and in the context
method (ii), where the former involves a DHT repository of
smart contracts and the latter involves a DHT repository of
entities underlying smart contracts that are being exchanged
among different smart contracts and subcontracts. The smart-
contract focused methods introduced in this paper contribute to
the overall goal towards a sustainable adaptive mechanism for
processing evolving volumes, versatility, and complexity of
blockchain transactions, traffic, and services. Blockchain-
enabled services are efficient, secure, automated, and allowing
worldwide distribution of resources. They present a more
efficient and sustainable alternative to current service
infrastructures within a range of domains, particularly the legal
and financial domains. They also set a sustainable
infrastructure for emerging Internet-of-things services.

Keywords—multifaceted scaling solution, smart contracts,
hierarchical contract conditionality, hierarchical encription keys,
common sectret, sustainable blockchain-enabled services.

I. INTRODUCTION
Blockchain technology aims at increasing volumes of

versatile traffic of evolving complexity. The target is to enable
complex services securely, sustainably, efficiently. Therefore,
the target is to accelerate/scale blockchain functionality.
While aiming at this target, the introduction/identification of
criteria for the solution provides grounds for and allows
comparison of alternative solutions. We argue in [1] that part
of the criteria should include: (i) a long-term rather than short-
term perspective, (ii) accommodation of new types of business

models rather than focusing predominantly on a single
business model, (iii) multiple facets/components contributing
synergetic effects to the overall growth solution, (iv)
maintaining the integrity and auditability of the blockchain.
Such criteria lead to the longevity of the new technology, and
thus contribute to the sustainability of the services it enables.
In a range of domains, Blockchain-enabled services provide a
viable alternative to current underperforming service
infrastructures of unreliable security.

In this paper, we propose components of the overall
solution that synergistically contribute to the functionality of
smart contracts. Smart contracts are currently an area of active
interest and emerging research. Still, innovative elements of
the proposed methods in this paper have not been considered
in the literature. We can relate the proposed methods to open
active questions in the literature. In [2], the challenges are
addressed that are involved in the validation and verification
of smart contracts running over blockchains, considering that
they might encode legal contracts written in natural language.
The current paper also addresses these challenges, and in
Section II here, a contract model is proposed along with a
method for automated management of smart contracts
enforced through the blockchain. In [3], it is discussed how
the blockchain-IoT combination facilitates the sharing of
services and resources leading to the creation of a marketplace
of services between devices. In the current paper, the contract
model is presented in terms of structured control conditions,
and thus the method we propose in Section II for automated
management of such conditions is directly applicable and
beneficial to emerging IoT services. The method proposed in
Section III here, for efficient and secure transfer of entities
underlying smart contracts, also contributes to a solution of
the question addressed in [3] about creation of a marketplace
of services between IoT devices. We agree with the authors’
view that the blockchain-IoT combination is powerful and can
cause significant transformations across several industries. In
[4], the authors consider the potential role of blockchain
technology towards innovation and transformation of
governmental processes. Their conclusion is that the
processes can be changed to benefit most of the technology, if
blockchain applications are customized to fit with process
requirements. The secure repository of smart contract
templates, i.e. smart process templates, which we propose in
Section II here, may contribute to achieving such benefit. Its
mechanism involves each institution accessing the repository
of smart templates to derive its institutional semi-templates
and continuously amend them through reuse.

4256

2

The remainder of the paper is organized as follows:
Section II considers the automated management of
blockchain-enforced smart contracts, Section III is focused on
smart contracts’ efficiency and security, and Section IV states
the conclusions and indicates further research focus.

II. AUTOMATED MANAGEMENT OF BLOCKCHAIN-
ENFORCED SMART CONTRACTS

A. Benefits
Blockchain-enforced smart contracts extend the

functionality of Bitcoin and broaden the type of services
facilitated through the blockchain technology. A range of
legal and financial services, which are currently inefficient
and potentially unsustainable, can be and maintained through
the blockchain-enforced smart contracts. Newly emerging
services within the Internet of Things (IoT) can also benefit
from and accelerate through the automated management of
blockchain-enforced structured control conditions. The
structured conditions are referred to as ‘contracts’, using the
broader definition of this terminology that is not restricted to
legal contracts. The counterparties can be institutions,
individuals, intelligent computing agents, or IoT devices. The
method proposed here simplifies the management of such
contracts, and thus provides for scaling the versatility and
complexity of blockchain-enabled services. This method is a
synergistic implementation and adaptation of key components
[5][6][7][8] within a multi-faceted solution for sustainable
scaling of blockchain functionality [1].

The proposed innovation provides:
• a security-enhanced control mechanism that permits

or prohibits access to an off-chain resource in an
intelligent manner, and allows contracts to be time-
bound, condition-bound, or open-ended and rolling-
over;

• a formalism for translating any contract or structured
conditions into a corresponding
and its deterministic finite automation ;

• a mechanism for implementing intelligent computing
agents that follow and execute the logic embedded in

 and , and for holding a
secure, public record of agents’ code on the
blockchain;

• a mechanism for turning any unspent crypto-
transaction into a smart contract, and to
structure a hierarchy of subcontracts allowing control
over different aspects of the overall contract to be
partitioned;

• a mechanism to hold a secure, public record of
contracts on the blockchain, in a manner that allows
automated determination of their validity, and release
of their details to authorized entities upon validation.

The initiation, stages of execution, and closure of a smart
contract are recorded on the blockchain through the creation,
broadcasting and recording of bitcoin transactions. This
allows verifying the current or past existence of a contract by
looking up corresponding blockchain transactions. The stage
of execution of an existing contract can also be verified, by
looking up recorded transactions corresponding to the

initiation or closure of its subcontracts. The logic of the
structured control conditions from the is
embedded within the locking/unlocking scripts of
transactions, as well as within other transaction elements such
as the nLockTime field. The contract’s logic is enforced
through individual actions and overall behavior of one or
several intelligent-agent applications. For accountability and
for reuse, parts of the codified overall behavior of an ,
or links to off-chain repositories where the code is stored, are
also embedded within the locking/unlocking scripts of
transactions recorded on the blockchain. The access to these
repositories, as well as to repositories storing the contract
documents and the , is selective, partial,
and secure. The access to the code or parts of it, and the access
to the contract or its subcontracts, matches the requirements
and character of the contract and the preferences of the
multiple counterparties involved.

B. Contract Model and Tokenisation
A repository of contracts can be implemented as a

distributed hash table (DHT) [9] across storage resources
within the Bitcoin network. A hash of a contract is generated
and stored as metadata within a blockchain transaction, and
serves as a DHT look-up key for referencing the contract from
the blockchain. The use of a master encryption key and
multiple sub-keys by each counterparty, proposed in Section
III.A of this paper, allows for secure access to the contract and
its subcontracts in the repository by authorized counterparties.
Auditing authorities are also provided with access
corresponding to the scope of each audit. For example, a
building company in England enters into a contract with
multiple counterparties to deliver a new development. The
contract has multiple subcontracts, and one of them addresses
the issuance of a plans certificate, as required by the relevant
regulation. One of the counterparties for this subcontract is the
building control department of a Local Authority. The control
department have access to this and probably further
subcontracts in the repository, but may not have access to
subcontracts specifying remunerations for the pool of
builders, as such information may be confidential. Another
subcontract of the building contract concerns the issuance of
a final certificate, as required by regulation, and one of the
counterparties here is an approved inspector. His access is
defined by analogy with the former case. The building
company and its auditors have access to all of the subcontracts
in the repository, and to all blockchain transactions enforcing
the contract and its subcontracts. The auditing firm may not
be a counterparty to any subcontract, and may access the
repository after the completion of the contract. The auditors
still are able to retrieve the relevant information and verify
transactions and the past execution of the contract, and thus
assess the performance of the building company.

The use of multiple encryption sub-keys also allows that
trusted third parties may modify some of the conditionality
and subcontracts of a stored contract. This translates into an
amended behavior of the intelligent enforcing the
contract. The blockchain transactions, which the
create for the amended instantiation of the contract, include
amended parameters in comparison with the transactions they

4257

3

created for a previous instantiation. For example, the renewal
of a lease contract or the renewal of a rental contract may
involve amended amounts and rates. Multiple encryption sub-
keys (see Section III.A) further facilitate establishing a

 [6] for each pair of counterparties on each
subcontract. A based encryption allows for
a secure channel of communication between a pair of
counterparties, when it is necessary to negotiate values of
parameters related to a subcontract such as lease rates and
rental amounts. Differing between the
same counterparties on different subcontracts provide the
additional security.

Having considered the mechanism of a DHT repository for
smart contracts, we now turn to the . Some
of its elements are listed in the following Definition:

Definition 1: elements
• a codification scheme that allows a complete

description of any type of contract, and is based on
constructs such as XBRL, XML, JSON, etc.;

• a deterministic finite automaton ‘translating’ the
contract logic and conditionality, where can be
fully defined within the codification scheme and
consists of:

o a set of parameters and an indication where to
source them;

o a set of state definitions;
o a set of transitions between the states, including

the trigger for the transition and the rules
followed during the transition;

o rules definition table;
• definitions of the specific parameters for this instance

of the contract;
• a 'compiler' converting the codification scheme into

intelligent-agent code and bitcoin script.
 is the essential component of the and

is implemented as an agent-based process. For complex
contracts, the implementation involves a sequence of
processes or parallel sequences of processes. Processes access
off-chain resources, and/or monitor the values of off-chain
and on-chain parameters, and/or create different blockchain
transactions under each conditionality step within the active
contract or under different triggers and parameter values.
Agent-based processes also send multisig transactions for
signature by counterparties prior to broadcasting them, and/or
communicate off-chain to inform counterparties or trusted
third parties, and/or verify on-chain records related to the
execution of past contracts. A can manage a
hierarchy of that carry out tasks
defined in a smart contract. The controls,
directs, monitors, and authorizes the activities of
each , and also coordinates their
activities. The and
communicate to execute the variety of tasks.

Having introduced the , the first step in
its implementation is to indicate the existence of a contract.
The on this contract creates the first
transaction associated with the contract, broadcasts it to the
Bitcoin network, monitors when it is recorded on the

blockchain and extracts its ID. Thus the existence of the
contract and the time when it became active are a permanent
auditable record publicly available on the blockhcain,
although the details of the contract may not be publicly
available. The uses a pay-to-script-hash

 address when creating transaction . For such
transaction to be spent, a recipient must provide a script
matching the script hash as well as data that makes the
script evaluate to true. is determined using the contract
metadata. After , a number of further transactions follow that
are associated with the contract and its subcontracts. They are
created by the or by .

A range of these transactions involve tokenization. In the
rest of this Section II.B, we introduce and extend tokenization
mechanisms from [10][11]. The use of master keys and
hierarchies of sub-keys by the and

 – where each agent has its own master
key and sub-keys, in combination with the tokenization
mechanism, allows for contract structure of any complexity to
be created and implemented and for its subcontracts and
schedules to be confirmed, triggered, executed, and
terminated. In this context, a token can non-exhaustively be
used to represent and detail, in the form of a bitcoin
transaction, the transferable rights conferred by a specific
contract or subcontract. The efficiently uses metadata
comprising only three parameters:

• a number of units available overall, ;
• a quantity of to be transferred from

a sender to at least one recipient;
• a for calculating a value for the

 as pegged to the cryptocurrency.
Such can represent any type of transferable rights, and
thus common algorithms are reused as parts of the codified
behavior of different . The is either divisible or
non-divisible, corresponding to the transfer of divisible or
non-divisible rights. In the latter case, the value of the
parameter is set to . For divisible rights, the
tokenized value transferred in the transaction output is tied to
the underlying bitcoin amount via a non-zero ,
and the transferred rights are thus specified in terms of a

. An example of divisible tokens are those
transferring some quantity of bearer shares, where a share is a
percentage ownership, i.e. a pegging rate, of the company. An
example of non-divisible tokens is those transferring bearer
bonds, where a bond is redeemable for an exact amount of a
fiat currency such as USD, GBP, etc. If some smart contracts
or their subcontracts involve issuing and selling bearer shares
or bonds then among the bitcoin transactions being created
during the implementation of the contracts are also transaction
representing the transfer of tokenized quantities of shares or
bonds.

Furthermore, the number of units available overall in the
tokenized rights is either limited or unlimited. In the former
case, the parameter is fixed and always greater
than . An example of limited units is the shared
ownership of a race horse, such as
and , or and

. An example of unlimited overall units

4258

4

is the inventory of a product in a warehouse, as the inventory
can be increased at any time and allow an increase in the
tokenized amount of product units. Bearer shares are also an
example of potentially unlimited units, as the company can
issue more shares. In some cases of unlimited units, the
current total number of units does not matter for the transfer
of ownership, and the value of parameter in the
token is set to . Such is the inventory example, where one
unit is one instance of the transferable product, i.e. a T-shirt in
the warehouse stock of T-shirts. In other cases, the current
number of potentially unlimited total available units matters.
As this number is variable, a monitors
it and identifies its correct value for each instantiation of such
divisible token. In case of bearer shares, transferring tokenized
ownership rights involves parameter values as follows:

 current number of issued
and non-redeemed shares

A monitors the number of issued shares
and the number of redeemed shares, and identifies the current
value of .

A final point here is that in the Bitcoin protocol, every
transaction output must have a non-zero bitcoin (amount to
be considered valid. As the token is in the form of a bitcoin
transaction, it has an underlying bitcoin value, which is the
amount attached to the output. This amount is arbitrary,
though at least equal to the set minimum called 'dust', as such
transaction is only a facilitator of ownership transfer. The true
value of transferred rights is found through the metadata
parameters. Non-divisible tokens are carried by .
Divisible tokens, under the proposed specification, use
underlying amounts in a meaningful manner by linking
these amounts to the . An underlying
amount is chosen so that when a divisible token is split into
several transaction outputs, the minimum of the split divisions
is carried by . Having considered the contract model and
a relevant tokenization mechanism in this Section, the next
Section II.C will focus on a contract’s conditionality and
subcontracts.

C. Master Contracts’ Conditionality and Subcontracts
A is interpreted as remaining in effect,

as long as there is a valid unspent transaction output
representing the existence of this master contract. That
unspent state is influenced and altered by the behavior
of the and Agents’
behavior is controlled through conditions in the

 that translate provisions and
stipulations from the contract document. For example, a
condition may involve that the contract expires when the
values of some variables reach specified thresholds.
Transactions associated with a contract are a permanent,
unalterable public record of the contract's existence and
current status. The termination of a contract is also recorded
on the blockchain, as a spent output in a crypto-transaction.
Anyone can use a software module to determine at what stage
of its execution a contract is or whether it has been terminated.

In this context, a is a contract that is directly
related to an existing , where the metadata
in transactions associated with the contain a
pointer or a reference, along with its hash, to the location of
the within the DHT repository. The
existence of a is implemented, similarly to
the existence, as an with a
deterministic redeem script address. The is
interpreted as being completed when this is spent. The
mechanisms used for creating the deterministic addresses in
the transactions associated with , within
the conditionality structure, include the
following:

• derive a new public sub-key using seed information;
• if an entry for a does not exist in the

repository of contracts, then create an entry so that:
o the entry is a description of this ;
o the description is in compliance with the

codification scheme for describing contracts
(see Definition 1)

o this description includes a reference to the
 entry in the repository

• once the entry is created or if such entry
already exists in the repository, then add the reference
to this entry to the metadata of transactions associated
with the ;

o the metadata may also include a reference to the
 entry;

• use the amended metadata to create addresses.
A use-case for creating a subcontract is described in Table 1.

TABLE I. ISSUING A SUBCONTRACT BASED ON AN EXISTING CONTRACT

Step Details

one

The derives, using a seed value, a new public
sub-key from its master public key used to create the

. The derives,
using the same seed, a new public sub-key from his master
public key used to sign the . The -

 can be an institution or an individual
responsible off-chain for the master contract. The seed value is
based on information from the . Examples of
appropriate seeds include:

-Transaction ID of the published on the blockchain to
indicate the existence of the ;

-Redeem script hash securing the and
created by the or the in an

-of- multi-signature structure, where at least the public
keys of the and the must
be supplied to this script. Depending on the terms of the

, other signatures may also be required,
including the signatures of a and a

, where the has
responsibilities for the in the off-chain world.
The number of all these signatures is , while further
includes the number of metadata blocks.

*Note: If a is being created instead of a
, then this step may include a

 deriving a new public sub-key, though a
seed value, from its master public key used to sign the parent

. All the , the
, the , and the

 use the same seed to derive a sub-sub-

4259

5

Step Details
key or a sub-key, within each one’s hierarchy of public keys,
from the corresponding parent key. A parent key for the
different signatories in this case may be either their master key
or their sub-key.

two

Depending on the nature of the being created, the
 either:

-uses the location and hash of the entry in
the repository of contracts; or

-embeds a link to the entry within the
 entry of the repository, and stores the location

of the subcontract entry and secure hash of it for later use.
*Note: the contract repository can be public, private or semi-
private, depending on the nature of .

three

The creates a redeem script covering the
 being secured, in an -of- multi-signature

structure, where is the number of compulsory signatures and
 further includes the number of metadata blocks. The number

of metadata blocks is at least two, the reference to the
 repository entry and the reference to the

.

four
The or the pays a
nominal amount to the redeem script calculated in step three,
through a standard pay-to-script-hash transaction.

five The waits until the transaction
has been published onto the blockchain and extracts its ID.

six

six A: For a fixed-duration , the
then creates a new transaction, with a lock-time set to the
expiry time of the , paying the output from step
five back to the ’s public sub-key hash or to the

’s public sub-key hash.
six B: For a with no fixed duration, the repay
script in the new transaction created at step six is not time-
locked but implemented as an -of- multi-signature element.
This transaction requires a sign-off from a

 monitoring the termination conditions for
the , and may be a sign-off from a further third
party. The multi-signature element may state “subject to sign-
off by <x>”. The new transaction is then circulated to the
required signatories to sign, which include at least <x>. Such
transaction has two outputs: the fee to <x> + the payment of
the generated .

The mechanism described at step six in Table 1 is also used
to monitor further types of conditions within a given

. For example, if a contract is worth ,
with to be paid at checkpoints through , then
this is implemented as a plus

. Each of the is marked as
complete using the same or different signatories (,
notaries, surveyors, brokers). Thus, a public record is
maintained showing which of the conditions attached to the

 have been met and which are yet to be met.
For , a monitors the state of

 and triggers payment , once the monitoring
confirms that is complete.

Bitcoin transactions implementing an example scenario of
contract conditionality are shown in Fig. 1. This scenario
corresponds to the building contract from Section II.B. The
contract includes at least two conditions requiring a planning
approval through the issuance of plans certificate and a
building-standard approval through the issuance of a final
certificate, correspondingly. The building company often
enters in such multiple-counterparty contracts to delivery new

buildings. Therefore, it is reasonable to assume that the
 of such contracts already exists, and that

there is an entry in the contract repository that can
be reused/reissued by instantiating it with amended
counterparties and parameters. The ‘template’ contract can be
reused simultaneously by several active instantiations, when
the building company works in parallel on several projects
that target the delivery of different properties. The
simultaneous instantiations may also be due to different
building companies having an active project each, or having
more than one active project each. When a building company
reuses the repository entry for the for
the first time, it creates a new repository entry that acts as the
company’s own template from then on. That latter template,
or rather semi-template, may embed a link to the repository
record of the former template. When reusing the semi-
template next, the company only appends a line of metadata
to the repository entry for that semi-template, and do not
create a new repository entry. The appended metadata plays a
key role in creating, monitoring and spending Bitcoin
transaction that implement the corresponding instantiation of
the contract. The metadata in such transactions include a
reference to the company’s , and a
pointer to the line in it containing the specific metadata for this
instantiation of the semi-template.

Representation of the Existence of a
New Instance of the Property Building Contract

Transaction-ID: -S5-T1
Version number
Number of inputs: 1
Previous Transaction Output:
< ’s previous unspent BTC output - assume Satoshi>
Previous Transaction Output Index: IDX-00
Script length
ScriptSig: Sig- PubK
Sequence number
Number of outputs: 2
First Output value: < is less than >
First Output script length
First Output script: OP_HASH160 <redeem script hash> OP_EQUAL

Redeem Script· requires 2 out of and
to conclude:
OP_1AssetMetaDataA AssetMetadataB PubK-

PubK- OP 4 OP_CHECKMULTISIGu
Second Output value: < is less than >
Second Output length
Second Output script:
OP_DUP OP_HASH160 <PubK- Hash> OP_EQUALVERIFY
OP_CHECKSIG
LockTime

Creation of a Subcontract by the Master Agent
using his first derived key to confirm planning approval

Transaction-ID: -S5-T2
Version number
Number of inputs: 1
Previous Transaction Output: -S5-T1
Previous Transaction Output Index: IDX-01
Script length
ScriptSig: Sig- PubK
Sequence number
Number of outputs: 2
First Output value: < is less than >
First Output script length

4260

6

First Output script: OP_HASH160 <redeem script hash> OP_EQUAL
Redeem Script requires to approve and

 to approve:
OP_2AssetMetaDataA AssetMetadataB PubK- SK1

PubK- PubK- OP_5
Second Output value: < is less than >
Second Output length
Second Output script:
OP_DUP OP_HASH160 <PubK- Hash> OP_EQUALVERIFY
OP_CHECKSIG
LockTime

Creation of a Subcontract by the Master Agent using
his second derived key to confirm building-standard approval

Transaction-ID: -S5-T3
Version number
Number of inputs: 1
Previous Transaction Output: -S5-T2
Previous Transaction Output Index: IDX-01
Script length
ScriptSig: Sig- PubK
Sequence number
Number of outputs: 2
First Output value: < is less than >
First Output script length
First Output script: OP_HASH160 <redeem script hash> OP_EQUAL

Redeem Script requires to approve and
 to approve:

OP_2AssetMetaDataA AssetMetadataB PubK- SK2
PubK- PubK- OP_5

Second Output value: < is less than >
Second Output length
Second Output script:
OP_DUP OP_HASH160 <PubK- Hash> OP_EQUALVERIFY
OP_CHECKSIG
LockTime

Planning Authority Sign-off
Transaction-ID: -S5-T4
Version number
Number of inputs: 1
Previous Transaction Output: -S5-T2
Previous Transaction Output Index: IDX-01
Script length
ScriptSig:

Sig- Sig-
OP_2AssetMetaDataA AssetMetadateB PubK- SK1 PubK-

 PubK- OP_5
OP_CHECKMULTISIG

Sequence number
Number of outputs: 1
Output value: < is less than >
Output script length
Output script:

OP_DUP OP_HASH160< nt Hash>OP_EQUAL
VERIFY OP_CHECKSIG

<The nt is paid a fee in Satoshi>
LockTime

Figure 1. Creating crypto-transactions corresponding to
contract and subcontract start, execution and completion.

Within the automated management of a building
company’s , a
associated with the semi-template monitors for a new line of
parameters being appended. New lines are appended by the
building company. The mechanism involves the company
routinely allocating some amount to the , so
that the agent can activate at any time the first steps in its

algorithm on issuing a new instance of the contract. The first
step in that algorithm is the creation and broadcast of the
transaction shown in dark shade in Fig. 1, and extracting its
ID after the transaction is recorded on the blockchain.
Thus becomes a secure, immutable, and publically
available electronic record of the existence of the new contract
in the physical world. The amount accessed for this step by
the can be small. The amount allocated by the
building company for access by the master agent is reviewed
at routine intervals. At the end of an interval, the balance
(excluding a set minimum) is automatically returned to the
building company, and it is assessed if and what amount to
make available to the agent in the next period. When the
activity of a company is more versatile and it is captured
through several semi-templates of different type, then the
allocation and reallocation of amounts to the

 of the templates is managed and optimized
by a higher-hierarchy agent called .
The reallocation is based on the evaluation of the prevailing
performance and usual needs of the . That
performance and needs are linked to the type of business line
a semi-template is supporting within the company’s business
portfolio, and the performance of the company along the
different business lines.

Following , Fig. 1 presents next (in light grey)
transactions related to two of the subcontracts that the

 of this template manages within an
instantiation of the . First, indicates
that a for getting a planning approval exists,
and next, indicates that a exists for getting
a building-standard approval. On the other hand, transaction

 confirms that a planning approval is received, and pays the
fees to the local authority’s building control department.
Therefore, the first is now closed. Of course,
the complete conditionality structure a building contract is
more complex, involves are larger number of ,
and may involve and

. However, even in Fig.1 the
hierarchical structure emerges, and shows that the

 derives a secret (private) sub-key for
managing and a secret sub-key for
managing . Section III next discuses
hierarchical structures in more detail.

III. SMART CONTRACTS’ EFFICIENCY AND SECURITY

A. Hierarchical Structures of Contracts, Crypto-keys,
and Common Secrets

The automated management of smart contracts [5]
introduced in Sections II is one of the components in the
multifaceted solution for scaling blockchain functionality.
Section II.C indicates that managing contract conditionality is
assisted by a hierarchical structure of public/private key-pairs.
The derivation of crypto-key hierarchies constitutes another
component [6][12] of the overall solution, and that component
assists and accelerates the function related components. We
emphasize that synergistic inter-dependencies within the
multifaceted solution accelerate the overall functionality and
efficiency.

4261

7

Let us consider complex contract conditionality
implemented through an hierarchy of and

, and assisted through an hierarchy of sub-
keys and sub-sub-keys. Fig. 2 shows a tree structure in blue
representing the hierarchical contract conditionality, and a
corresponding three structure in red representing hierarchical
keys needed to assist the implementation of the complex
contract. Each element in the red tree corresponds to a
public/private key-pair, created by adding multiply-rehashed
relevant information. That information may include IDs of
existing transactions or metadata from existing entries in the
contracts repository. Though only the secret (private) keys
are indicated in the red tree, for every derived secret key, a
corresponding public key is also derived. Therefore, the
tree corresponds to a hierarchy of asymmetric public/private
key-pairs . For clarity of introducing the mechanism,
it is assumed that the manages all

 and . In practice, some of
these elements of the blue structure can be managed by

 Notice that each element of the blue
structure is implemented by at least two transactions, i.e.
indicating that a new (sub-sub-)contract exists and then
terminating it. This is the case with transactions and in
Fig. 1, for example. Therefore, the pair in each element of the
red structure is used to sign and redeem scripts in at least two
transactions.

Figure 2. Hierarchical contract conditionality and
 correspomding derived tree-structure of keys.

In Fig. 2, refers to the master private key of the
, and to are private sub-

keys of the same agent, where to

 can be executed in parallel. On the
other hand, and are the private sub-keys
of this agent, where to
can only be executed in sequence. Next,
to are ’s private sub-sub-keys, where

 to can
be executed in parallel only after
to are executed in sequence. Finally,

 to are ’s private sub-sub-keys,
where to
can only be executed in sequence and only after

 to are executed in sequence.
Notice that some can serve as

 for the that follow
below them in the hierarchical structure. Thus,

 can act as a or rather
as a for to

 as well as for
to .

In the general case, any information can serve the role of
a seed. However, the information may also be meaningful in
the contexts that the hierarchy of keys is used. We choose here
as , the redeem script hash securing the

 and created in an -of- multi-signature
structure. Further, a seed is chosen as the
redeem script hash securing a and
created in an -of- multi-signature structure. From Fig. 2, it
can deducted that at least sub-master seeds and
must be chosen, corresponding to
and . The seeds are involved in
producing the generator values to , when
deriving the tree of asymmetric cryptographic key-pairs. Key
derivation starts with the selecting a random
value for the base point , and communicating it to the

. The base point is applied, as described
below, to derive a public key from a corresponding private
key, in order to complete an asymmetric cryptographic key-
pair using Elliptic Curve Cryptography (ECC).The base point
can also be communicated to any other signees on transactions
created in implementing the hierarchical contract
conditionality, particularly if they have a significant role in the
structure and that role involves communications/negotiations
in relation to a number of elements in the structure. We will
introduce the mechanism first focusing on the
and the , and their meaningful hierarchies of
cryptographic key-pairs and . However,
this mechanism can be applied accordingly when other
signees also derive their hierarchies of key-pairs and

. The mechanism can further be adapted to
the case when some branches of the conditionality structure
are managed by .

Considering Fig. 2, the starts with its
valid secret key MA_SK. Any 256-bit number from to

 is a valid ECDSA

private key [13], where ECDSA abbreviates the Elliptic Curve

 …

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

4262

8

Digital Signature Algorithm. Then, derives its hierarchy
of private keys as follows:

 for (1)

 (2)
for

 (3)

 (4)
for

where
 (5)

For , generator value is produced using the
concatenation of the redeem script hash M of the

 and the hash .
Here, is an instantiation of the

 which is being amended from
the . Further, for , generator
values use the instead
of the . Also, are produced by
analogy to , as
are executed in parallel, similarly to the way

 are executed in parallel.
On the other hand, generator values are produced by
rehashing the for , and values

 are produced by rehashing the
 for .

Next, Elliptic Curve Cryptography (ECC), properties of
elliptic curve operations, and the base point are used to
complete the asymmetric cryptographic key-pairs and derive
the public keys of the . The operator in (6-
10) stands for scalar addition and the operator refers to
elliptic curve point multiplication. Having that elliptic curve
cryptography algebra is distributive, hierarchy of public keys
of the is produced as follows:

 (6)
 , for (7)

 (8)
for

 for (9)
(10)

for
where are the generator values used in (1) and
are the generator values used in (3). By analogy with the

 hierarchy of key-pairs, the public/private
key pairs of the are derived as follows:

 for (11)
 (12)

for
 (13)

 (14)
for

 (15)
 , for (16)

 (17)
for

 for (18)
 (19)

for
In scripts and transactions related to different

 or , the
and the use different corresponding keys
within their hierarchies. This increases security, as even
if a transactions related to a is
compromised, the integrity of the rest of the contract structure
is preserved. Furthermore, an element in the hierarchy of
public keys can be produced in advance of the execution of
the corresponding , as the relevant
generator value is available and known to the

and the before that
execution. Notice that the generator values can be produced
in a different way, and (1-19) present just one alternative.
However, any version should allow the evaluation of the
current generator value before the current element of the
conditionality structure. Thus, the evaluates
each of the public keys to of the

 at the same time at which the
 evaluates them. The vice-verse is also true,

and the evaluates each of the public keys
 to of the at the same

time at which the evaluates them. Also, the
pairing private keys are produced by their owner at the same
time, i.e. the earliest step, he can produce the corresponding
public keys.

Figure 3. A hierarchical of common secrets.

…

…

…

…

…

…

……

4263

9

As a result, the and the
 produce independently the same hierarchy of

 CS, as presented in Fig. 3. The
 produces the as:

 (20)

and the produces the same
 as:

 (21)

Now, each to serves as a
basis for a symmetric encryption key securing a channel
for communication between and regarding a
corresponding to .
For example, the communication may confirm parameters or
prioritize preferences.

B. Efficient and Secure Transfer of
Smart Contracts and Underlying Entities

Further solution components provide methods and
systems for efficient and secure transfer of entities on a
blockchain [7][8]. These methods have wide effect on services
but are particularly beneficial to smart-contract functionality.
That increased functionality, in turn, helps sustain blockchain-
enabled services of varying complexity. We focus in this
Section III.B on the case when the entities being transferred
are underlying smart contracts. A smart contract can also be
an underlying of another smart contract. For example, the
ownership of a tokenized financial instrument is transferred
through a smart contract, and the structure of the financial
instrument is implemented through another smart contract.
The underlyings can include physical assets and IoT devices
manipulated through the contracts, or virtual assets – such as
rights on physical assets or rights on particular services – that
are controlled through the contract. The control of smart IoT
devices is a further example.

The transfer of entities underlying smart contracts is
facilitated trough tokenization techniques. Enhanced
optimization of memory usage in the electronic transfers, and
improved security and data integrity are achieved through
hashing techniques. Steps in the transfer involve:

• Generating a script that comprises:
o A set of metadata associated with an

invitation for the exchange of an entity ,
where is one of the underlyings of a smart

 or . The meta-
data includes a pointer or other reference to the
location of that contract.

o The derived public key associated
with the and used in scripts,
transactions and communication in relation to
the exchange of entity owned by . In a
hypothetical example, pension funds offer a
variety of structured pension products and

clients can hold a portfolio of different
structured products from different funds. For
each of the structured pension products a client
holds, he may also select the proportion of the
elements within the product. Clients of
different funds are allowed to exchange (parts
of) their holdings under certain conditions. The
conditions differ among funds in level of detail
and restrictive constraints, and so the exchange
is not standardized. In the context of pensions,
the actions are of relatively low frequency and
based on long term perspective. When a client
would like to exchange parts its holdings, he
acts as a contract issuer. He has a different pair
of keys derived from his master keys, where
each pair is used for one of the structured
products he holds. That pair is used for
scripts/transactions related to the exchange of
this product, and for communication about this
product with the intelligent agent through a

 .
o The derived public key of the

 managing the contract issued
by , where is used only in relation
to entity .

• Hashing and publishing and its hash on a
distributed hash table (DHT), which is distributed
across a (worldwide) network and the script hash
serves as a DHT look-up key.

o This DHT resource differs from the DHT
repository of contract discussed in Section II.

• Generating an invitation transaction for inclusion
on the blockchain, where the transaction comprises
the hash of and an indication of an entity to be
transferred in exchange for .

• Scanning through the plurality of DHT entries, where
each entry comprises:

o an invitation to perform an exchange of an
entity underlying a smart contract; and

o a link to an invitation transaction on the
blockchain.

• (Partial) matching of the set of metadata from the
initial invitation-entry in the DHT repository of
invitations, to a set of metadata in another
invitation-entry. Each set and comprises:

o an indication of entities to be exchanged, for
 and for , correspondingly, where

 and , and
o conditions for the exchange that also (partially)

match.
• Generating, broadcasting, and recording on the

blockchain of an exchange transaction that
includes:

o The script , signed with the derived private
key of the , where

 corresponds as cryptographic
pairing to the public key . The
script may also be signed by the

4264

10

 using the private key
 .

o The script of the (partially) matching DHT
invitation-entry, signed with the private key

 corresponding to public key
, and signed with the private key

 corresponding to . These
keys are associated, respectively, with the

 and .
o A first input provided from an output of

invitation transaction .
o A second input provided from an output of

invitation transaction .
o A first output indicating a quantity of the

(tokenized) entity to be transferred to
the control of , and to the ownership of

 .
o A second output indicating a quantity of the

(tokenized) entity to be transferred to the
control of and ownership of

 .
This method provides for data integrity and optimization

of memory, and using DHT contributes to these qualities.
Further, DHT invitation-entries, initiated at different stages
of the conditionality structures of a variety of smart contracts,
may be matched worldwide or within a scope indicated
in/required by the smart contracts. The method enables
disparate/distinct smart contracts (subcontracts) to identify/
match each other, and to securely exchange their underlying
entities. This does not require alteration of the blockchain
protocol, while embedding metadata in scripts associated with
blockchain transactions.

IV. CONCLUSION
This paper introduces some of the interdependent

components in a multifaceted solution for accelerating the
functionality of blockchain-enabled services through
distributed scalability and agent-based automation [1]. The
focus here is particularly on components that enhance the
functionality of blockchain-enforced smart contracts. These
include the method/system for automated management of
smart contracts with hierarchical conditionality structures, and
the method/system for efficient and secure matching and
transfer of contract underlyings among diverse smart contracts
and subcontracts. Services enabled by implementing
blockchain-enforced smart contracts are efficient, secure,
automated, and allow (worldwide) resource distribution. They
present a sustainable and efficient alternative to some of the
current service infrastructures, particularly when some of
them are underperforming or with unreliable security.

The methods introduced in this paper are not restricted to
using SHA-256 and other hash algorithms from the Secure
Hash Algorithm (SHA) family may be used, such as instances
in the SHA-3 subset. Further hash algorithms may also
include those in the RACE Integrity Primitives Evaluation
Message Digest (RIPEMD) family, and in the families based
on Zemor-Tillich hash function or on knapsack-based hash
functions. The introduced methods are further not restricted to

Bitcoin, and can be implemented in increasing the
functionality of any blockchain-enforsed smart contracts.

We have emphasized the synergistic effect of
implementing the interdependent components of the
multifaceted solution we are developing towards increasing
the complexity and versatility of blockchain-enabled services
and accelerating the functionality of blockchain-enforced
smart contracts. Some of these components are introduced in
this paper. Our research focus is next on big-data analysis of
the potential effects on the Bitcoin network performance due
to: (i) adopting each of the innovative components of the
solution, (ii) their rate of adoption, and (iii) the sequence in
which they are adopted.

ACKNOWLEDGMENT
The authors are grateful for the creative and supportive

environment at nChain Limited, within its scientific and
applied research teams.

REFERENCES
[1] C. Wright and A. Serguieva, “Sustainable blockchain-enabled services:

Distributed scalability and agent-based automation,” in Applications of
Data-Centric Science to Social Design, A.-H. Sato, Ed., Agent-Based
Social Systems Series, H. Deguchi, Ed.-in-chief, Springer, 2018,
forthcoming.

[2] D. Magazzeni, P. McBurney and W. Nash, “Validation and
Verification of Smart Contracts: A Research Agenda,” Computer, vol.
50(9), pp. 50-57, 2017.

[3] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts
for the Internet of Things,” IEEE Access, vol. 4, pp 2292-2303, 2016.

[4] S. Olnes, J. Ubacht and M. Janssen, “Blockchain in government:
Benefits and implications of distributed ledger technology for
information sharing,” Government Information Quarterly, vol. 34(3),
pp355-364, 2017.

[5] nChain Holdings, “International Patent Application No. PCT/IB2017/
050865,” filed Feb. 23, 2016.

[6] nChain Holdings, “International Patent Application No. PCT/IB2017/
050856,” filed Feb. 23, 2016.

[7] nChain Holdings, “International Patent Application No. PCT/IB2017/
050859,” filed Feb. 23, 2016.

[8] nChain Holdings, “International Patent Application No. PCT/IB2017/
050861,” filed Feb. 23, 2016.

[9] G. Urdaneta, G. Pierre, and M. van Steen, “A survey of DHT security
techniques,” ACM Computing Surveys, vol. 43(2), pp. 1-49, Jan. 2011.
Available from: doi:10.1145/1883612.1883615 [Accessed on: Oct. 20,
2017]

[10] nChain Holdings, “International Patent Application No. PCT/IB2017/
050818,” filed Feb. 23, 2016.

[11] nChain Holdings, “International Patent Application No. PCT/IB2017/
050819,” filed Feb. 23, 2016.

[12] nChain Holdings, “International Patent Application No. PCT/IB2017/
050815,” filed Feb. 23, 2016.

[13] BitcoinWiki, “Range of valid ECDSA private keys,”, BitcoinWiki
Category: Private Key, Available from: http://en.bitcoin.it/
wiki/Private_key [Accessed on: Oct. 1, 2017].

[14] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,” Bitcoin
Project: Resources and Developer Documentation, pp. 1–9, 2008.
Available from http://bitcoin.org/bitcoin.pdf [Accessed on: May 22,
2017].

[15] Nakamoto Institute, Code: the first three available Bitcoin codebases
written by Satoshi Nakamoto, 2009. Available from:
http://satoshi.nakamotoinstitute.org/code [Accessed on: Jun. 27,
2017].

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

