
0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.2993470, IEEE Software

Department: Head
Editor: Name, xxxx@email

From Domain Specific
Language to Code: Smart
Contracts and the Application
of Design Patterns

M. Wöhrer and U. Zdun
University of Vienna, Faculty of Computer Science

Abstract—
Smart contracts are self-executing computer programs that stipulate and enforce the negotiation
and execution of (legal) contracts. Today, one of the most prominent smart contract ecosystems
is Ethereum, a blockchain based distributed computing platform, that can be used to capture and
express contract terms, for instance, in the platform’s leading programming language, Solidity.
Due to the conceptual discrepancy between legal contract terms and corresponding code, it is
difficult to easily comprehend smart contracts and write them efficiently without errors. After all,
blockchain-based contract execution, lacking programming abstractions, and constantly
changing platform capabilities and security aspects, make writing smart contracts a difficult
undertaking. To address these problems, this article proposes smart contract design patterns
and their automated application, by means of code generation and the use of a domain-specific
language.

SMART CONTRACTS based on blockchain
technologies have received a lot of attention in
the recent past. Their potential to open up new
business applications, by replacing the established
trust concept of intermediaries, has sparked a
hype around them. However, the initial euphoria
was dampened by serious security incidents [1]
and the insight that failing contracts can entail
huge financial losses. This applies in particular to
one of the most prominent implementation plat-

forms for smart contracts, Ethereum. Ethereum
is an open source, distributed computing plat-
form, allowing the creation and execution of
decentralized programs (smart contracts) in its
own blockchain [2]. Nowadays, creating such
smart contracts that convert legal contracts into a
machine readable and executable form is a chal-
lenging task. Beyond the conceptual gap between
natural (legalese) language and equivalent code,
various peculiarities of the underlying blockchain

Special Issue on Blockchain and Smart Contract Engineering Published by the IEEE Computer Society c© 2020 IEEE 1

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 02,2020 at 05:51:07 UTC from IEEE Xplore.  Restrictions apply. 



0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.2993470, IEEE Software

Department Head

environment complicate the correct and secure
creation of smart contracts even further [3]. These
include the fixed and autonomous nature of code
execution, the lack of high-level coding abstrac-
tions, and the rapid progress of the development
framework. In view of these problems, it is ben-
eficial to have a foundation of established design
and coding guidelines along with a framework
for their application. To pursue this goal it is
advantageous to base smart contracts on higher-
level, well established designs that have emerged
as best practices [4]. To this end, we propose
design patterns [5] for creating smart contracts in
the context of Ethereum and similar platforms. In
order to automate the application of these design
patterns and to avoid errors due to their man-
ual coding, we also propose a domain-specific
language (DSL) for smart contracts and a code
generator to generate Solidity code from the DSL.
A DSL is a computer programming language
of limited expressiveness focused on a particular
application domain [6].

Contract Stages

Contracts are usually preceded by an abstract
agreement that specifies elementary modalities
and actions between parties. In order to avoid the
ambiguity of natural language and to explicate
terms and conditions as clearly and completely
as possible, contracts are written in legalese. This
can be understood as a first formalization method.
A machine readable representation, usually in a
formal language, is retrieved from a conversion
of the traditionally written contract, although a
contract could be immediately specified in a
formal language. A written contract is grounded
on law, where enforceability is considered to be
ex post, i.e. a party can enforce a settlement at
court only after a contractual breach. This stands
in contrast to the formal machine representation
and its realization as a smart contract, where
the execution is based on an architecture that
by design does not allow non-conformism, hence
enforceability is considered to be ex ante. The
above described principles are depicted in Fig-
ure 1, which gives an overview of the different
contract stages, namely negotiation, formation,
and performance.

Agreement
(Abstract)

Contract
(Legalese)

Smart Contract
(Formal Language)

Law
(Ex Post)

Architecture
(Ex Ante)

Formalization

Execution &
Enforcement

Negotiation

Formation

Performance

Figure 1: Contract stages and the conceptual
relation between traditional and smart contracts.

Smart Contract Design Patterns
Design patterns express an abstract or concep-

tual solution to a concrete, complex, and reoccur-
ring problem. In the context of Ethereum-based
smart contract development we have elaborated
several design patterns (see [7], [8] for details).
The patterns help to solve commonly recurring
application requirements and address common
problems and vulnerabilities connected to smart
contract design. According to their operational
scope they are divided into five categories: a) Ac-
tion and Control, b) Authorization, c) Lifecycle,
d) Maintenance, and e) Security. Although some
patterns are very basic, their real practical value
unfolds when patterns are used as a prerequisite
or in combination with other patterns. Table 1
provides an overview of the pattern categories and
associated patterns, including a brief description
of the underlying problem and its solution. More
details about the patterns along with Solidity
coding practices can be studied in [7], [8].

DSLs for Smart Contract Development
DSLs can express a problem discipline in a

more natural way for domain experts, making
the entire development process more efficient and
less error prone. Several smart contract DSLs
exist with various language concepts and pro-
gramming paradigms, like DAML [9] a functional
language influenced by Haskell, Ergo [10] an
imperative language, and Archetype [11] a declar-
ative and imperative language focusing on formal
verification, to just name a few. In contrast to
these languages, we propose a DSL called Con-
tract Modeling Language (CML) [12] that builds
on a clause grammar close to natural language
to mimic the obligations expressed in contracts.
The language is implemented in Xtext [13] and
available on Github [14].

2 Special Issue on Blockchain and Smart Contract Engineering

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 02,2020 at 05:51:07 UTC from IEEE Xplore.  Restrictions apply. 



0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.2993470, IEEE Software

Table 1: Smart contract design patterns overview.

Action and Control
Pull Payment As a send operation can fail, let the receiver withdraw the payment.
State Machine When different contract stages are needed, these are modeled and represented by a state machine.
Commit and Reveal As blockchain data is public, a commitment scheme ensures confidentiality of contract interactions.
Oracle (Data Provider) When knowledge outside the blockchain is required, an oracle pushes information into the network.
Authorization
Ownership As anyone can call a contract method, restrict the execution to the contract owner’s address.
Access Restriction When function execution checkups are needed, these are handled by generally applicable modifiers.
Lifecycle
Mortal Since deployed contracts do not expire, self-destruction with a preliminary authorization check is used.
Automatic Deprecation When functions shall become deprecated, apply function modifiers to disable their future execution.
Maintenance
Data Segregation As data and logic usually reside in the same contract, avoid data migration on updates by decoupling.
Satellite As contracts are immutable, functions that are likely to change are outsourced into separate contracts.
Contract Register When the latest contract version is unknown, participants pro-actively query a register.
Contract Relay When the latest contract version is unknown, participants interact with a proxy contract.
Security
Checks-Effects-Interaction As calls to other contracts hand over control, avoid security issues by a functional code order.
Emergency Stop Since contracts are executed autonomously, sensitive functions include a halt in the case of bugs.
Speed Bump When task execution by a huge number of users is unwanted, prolong completion for counter measures.
Rate Limit When a request rush on a task is not desired, regulate how often a task can be executed within a period.
Mutex As re-entrancy attacks can manipulate contract state, a mutex hinders external calls from re-entering.
Balance Limit There is always a risk that a contract gets compromised, thus limit the maximum amount of funds held.

Contract Modeling Language (CML)
CML is a high-level DSL using a declarative

and imperative formalization as well as object-
oriented abstractions to specify smart contracts.
As seen in the exemplary CML contract in Fig-
ure 2 on the left, contracts in CML consist of
state variables (line 7-10) and actions (line 22-
35), which operate on these. In addition, con-
tracts contain clause statements (line 12-20) that
resemble natural language, to mimic and capture
contractual obligations of involved parties. More
precisely, these statements represent so-called
covenants, which are specific contractual clauses
that belong to elementary building blocks of con-
tracts and enclose promises to engage in or refrain
from certain actions. The conceptual structure of
clause statements (see Figure 1 lower left) is de-
rived from an analysis of typical covenant compo-
nents and looks as follows: Each clause statement
must specify at least an actor, an action, and the
modality of that action (“may” or “must”) and
has an unique identifier for referencing. Optional
elements include temporal or state constraints.
Temporal constrains are indicated by the keyword
“due” followed by a temporal precedence (i.e.,
“after” or “before”) and a trigger expression. The
trigger expression refers to an absolute time or a
construct from which an absolute time can be de-
rived. This includes the performance of a clause,
the execution of an action, or the occurrence of an

external event. General constraints can be defined
after the keyword “given” by multiple linked
conditions, which usually refer to the contract
state. In general, the described clause statements
support a more natural and practical contract
representation compared to an unstructured code
implementation and offer a better overview of
contract behavior at a glance.

To further expand efforts towards abstraction,
CML uses a type system that is more closely re-
lated to application domain concepts. CML offers
not only typical primitive types (Boolean, String,
etc.), but also basic temporal types (DateTime,
Duration), and easily extensible structural com-
posite types (Party, Asset, Transaction, Event) to
embody common contract-specific concepts and
operations. Through these measures a generic
framework for contract formalization is provided,
that avoids an excessive syntax containing imple-
mentation specifics. As a result, higher-level con-
tract specifications can be translated into a desired
form of implementation, leading to a decoupling
of contract specification and implementation.

CML Code Generation to Solidity
As proof-of-concept, we have implemented a

code generator that assigns CML abstractions to
appropriate Solidity equivalents. During this pro-
cedure, design patterns and other practical coding
idioms can be applied. To illustrate this process,

September/October 2020 3

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 02,2020 at 05:51:07 UTC from IEEE Xplore.  Restrictions apply. 



0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.2993470, IEEE Software

Department Head

CML
1 namespace cml.examples
2
3 import cml.generator.annotation.solidity.*
4
5 @PullPayment
6 contract SimpleAuction
7 Integer highestBid
8 Party highestBidder
9 Party beneficiary

10 Duration biddingTime
11
12 clause Bid
13 due within biddingTime after contractStart
14 party anyone
15 may bid
16
17 clause AuctionEnd
18 due after contractStart.addDuration(

biddingTime)
19 party beneficiary
20 may endAuction
21
22 action init(Duration _biddingTime, Party

_beneficiary)
23 biddingTime = _biddingTime
24 beneficiary = _beneficiary
25
26 action bid(TokenTransaction t)
27 ensure(t.amount > highestBid, "There

already is a higher bid.")
28 caller.deposit(t.amount)
29 if (highestBid != 0)
30 transfer(highestBidder, highestBid)
31 highestBidder = caller
32 highestBid = t.amount
33
34 action endAuction()
35 transfer(beneficiary, highestBid)

Conceptual structure of a clause statement:

clause ID
[due [within RT] (after|before) TRIGGER]
[given CONDITION]
party ACTOR
(may|must) ACTION {(and|or|xor) ACTION}

Trigger: AT | ClauseTrig | EventTrig | ActionTrig
ClauseTrig: clause ID (fulfilled|failed)
ActionTrig: ACTOR did ACTION
EventTrig: event ID

RT...Relative Time, AT...Absolute Time

Solidity
1 pragma solidity >=0.4.22 <0.7.0;
2 pragma experimental ABIEncoderV2;
3 import "./lib/cml/ConditionalContract.sol";
4 import "./lib/cml/DateTime.sol";
5 import "./lib/openzeppelin/PullPayment.sol";
6 ...

9 contract SimpleAuction is ConditionalContract, PullPayment {
10
11 struct Party {
12 address payable id;
13 }
14
15 uint highestBid;
16 Party highestBidder;
17 Party beneficiary;
18 uint biddingTime;
19 uint _contractStart;
20
21 constructor(uint _biddingTime, Party memory _beneficiary) public {
22 biddingTime = _biddingTime;
23 beneficiary = _beneficiary;
24 _contractStart = now;
25 }
26
27 function bid() public payable checkAllowed("Bid") {
28 require(msg.value > highestBid, "There already is a higher bid.");
29 if (highestBid != 0) {
30 _asyncTransfer(highestBidder.id , highestBid);
31 }
32 highestBidder = Party(msg.sender);
33 highestBid = msg.value;
34 }
35
36 function endAuction() public checkAllowed("AuctionEnd") {
37 _asyncTransfer(beneficiary.id , highestBid);
38 }
39 ...

42 function clauseAllowed(bytes32 _clauseId) internal returns (bool) {
43 if (_clauseId == "Bid") {
44 require(onlyAfter(_contractStart, biddingTime, true), "Function not called

within expected timeframe");
45 return true;
46 }
47 if (_clauseId == "AuctionEnd") {
48 require(onlyBy(beneficiary.id), "Caller not authorized");
49 require(onlyAfter(DateTime.addDuration(_contractStart, biddingTime), 0,

false), "Function called too early");
50 return true;
51 }
52 return false;
53 }
54 ...

76 }

Support Libraries

CML Domain Model
Transformation

State Variables

Clause Constraint
Check

Derived Clause
Constraints

Derived Clause
Constraints

Pull Payment Pattern

Figure 2: An auction contract specified in CML and an excerpt of the generated Solidity code.

Figure 2 shows a simple auction contract in CML
and the correspondingly generated output in So-
lidity. The generator traverses the CML represen-
tation to produce Solidity code that relies on static
and dynamically created support libraries. These
libraries contain the implementation of CML
abstractions. As such they embody CML type
operations (line 4), or refer to established libraries
for smart contract development (line 5). In light
of this, type operations in CML are merely de-
clared as method signatures and are implemented
in Solidity through library calls. Regarding the
structural transformation, CML types are mapped
to conceptual Solidity type equivalents (line 11-
19), actions are converted to Solidity functions
(line 21-38), and clause statements are trans-
formed into declarative checks (line 43-52) that
are applied by the checkAllowed modifier (line
27, 36) added to those functions. The modifier
itself is inherited from ConditionalContract and

contains a call to clauseAllowed (overridden in
line 42) as well as code to track the context (e.g.
time, caller) of successfully executed functions.
During code generation it is also possible to
apply design patterns. In the depicted example
the Pull Payment pattern is applied to mitigate
security risks when sending funds, by switching
from a push to a pull payment. An appropriate
annotation instructs the generator to incorporate
the pattern implementation (line 9) and engage
asynchronous payments for all outgoing token
transfers (line 30). Various other practical trans-
formation schemes are possible. For example,
an automatic application of wrapper calls for
arithmetic operations to avoid type overflows and
underflows. Also the seamless use of decimal
numbers, although not currently supported by
Solidity, through fixed point arithmetic, with the
generator automatically inducing the appropriate
value assignments and arithmetic calculations.

4 Special Issue on Blockchain and Smart Contract Engineering

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 02,2020 at 05:51:07 UTC from IEEE Xplore.  Restrictions apply. 



0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.2993470, IEEE Software

CONCLUSION
In this article we have presented smart con-

tract design patterns and proposed a high level
smart contract language called Contract Modeling
Language (CML). The patterns provide guidance
for addressing common smart contract design
challenges in Ethereum, and the DSL provides
useful abstractions for the specification of smart
contracts. The combined application of both is
shown by transferring a CML specification into a
Solidity implementation that follows established
design recommendations. The associated code
generation serves to automate platform-specific
implementation steps by mapping abstractions to
suitable target equivalents and integrating use-
ful design patterns and coding practices. The
proposed approach can reduce the design com-
plexity since an abstract representation, that is
very compact and close to the target domain,
is translated into a more verbose and low-level
implementation. In addition, the approach can
reduce the susceptibility to errors, assuming the
code generator generates correct code. Overall,
the use of a DSL including code generation based
on design patterns can increase the efficiency,
clarity and flexibility of smart contract develop-
ment while reducing the susceptibility to errors.

REFERENCES

1. “Major issues resulting in lost or stuck

funds · ethereum/wiki Wiki · GitHub.” [On-

line]. Available: https://github.com/ethereum/wiki/wiki/

Major-issues-resulting-in-lost-or-stuck-funds

2. Ethereum, “Ethereum Project.” [Online]. Available:

https://www.ethereum.org/

3. W. Dingman, A. Cohen, N. Ferrara, A. Lynch, P. Jasin-

ski, P. E. Black, and L. Deng, “Defects and vulnerabili-

ties in smart contracts, a classification using the NIST

bugs framework,” International Journal of Networked

and Distributed Computing, 2019.

4. “Secure Development Recommendations -

Ethereum Smart Contract Best Practices.”

[Online]. Available: https://consensys.github.io/

smart-contract-best-practices/recommendations/

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, De-

sign Patterns: Elements of Reusable Software. Boston,

MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 1996.

6. M. Fowler and R. Parsons, Domain-Specific Lan-

guages, 2010.

7. M. Wohrer and U. Zdun, “Smart contracts: Security

patterns in the ethereum ecosystem and solidity,”

2018 IEEE 1st International Workshop on Blockchain

Oriented Software Engineering, IWBOSE 2018 -

Proceedings, vol. 2018-Janua, pp. 2–8, 2018.

[Online]. Available: http://ieeexplore.ieee.org/document/

8327565/

8. ——, “Design Patterns for Smart Contracts in the

Ethereum Ecosystem,” in 2018 IEEE International

Conference on Internet of Things (iThings), 2018, pp.

1513–1520. [Online]. Available: https://ieeexplore.ieee.

org/document/8726782

9. “DAML Programming Language.” [Online]. Available:

https://daml.com/

10. “Ergo - Accord Project.” [Online]. Available: https:

//www.accordproject.org/projects/ergo/

11. “What is Archetype - archetype.” [Online]. Available:

https://docs.archetype-lang.org/

12. M. Wöhrer and U. Zdun, “Domain Specific Language

for Smart Contract Development,” in IEEE International

Conference on Blockchain and Cryptocurrency, 2020.

[Online]. Available: http://eprints.cs.univie.ac.at/6341/

13. “Xtext framework.” [Online]. Available: https://www.

eclipse.org/Xtext/

14. “Contract Modeling Language.” [Online]. Available:

https://github.com/maxwoe/cml

Maximilian Wöhrer is a researcher at the Faculty
of Computer Science, University of Vienna, Austria.
He received a master degree in computer science
in 2009 (with distinction). His research areas include
blockchain technology, smart contracts, software ar-
chitecture, software engineering, and the application
of design patterns in the afore mentioned domains.
Currently, he is pursuing a PhD in computer science.
Contact him at maximilian.woehrer@univie.ac.at.

Uwe Zdun is a full professor for software architecture
at the Faculty of Computer Science, University of
Vienna, Austria. His research focuses on software de-
sign and architecture, empirical software engineering,
distributed systems engineering, software patterns,
domain-specific languages, and model-driven devel-
opment. Uwe has published more than 210 articles in
peer-reviewed journals, conferences, book chapters,
and workshops, and is co-author of several books.
Contact him at uwe.zdun@univie.ac.at.

September/October 2020 5

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 02,2020 at 05:51:07 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/ethereum/wiki/wiki/Major-issues-resulting-in-lost-or-stuck-funds
https://github.com/ethereum/wiki/wiki/Major-issues-resulting-in-lost-or-stuck-funds
https://www.ethereum.org/
https://consensys.github.io/smart-contract-best-practices/recommendations/
https://consensys.github.io/smart-contract-best-practices/recommendations/
http://ieeexplore.ieee.org/document/8327565/
http://ieeexplore.ieee.org/document/8327565/
https://ieeexplore.ieee.org/document/8726782
https://ieeexplore.ieee.org/document/8726782
https://daml.com/
https://www.accordproject.org/projects/ergo/
https://www.accordproject.org/projects/ergo/
https://docs.archetype-lang.org/
http://eprints.cs.univie.ac.at/6341/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://github.com/maxwoe/cml

