
Increasing Trust in Tor Node List Using Blockchain
Lukáš Hellebrandt† Ivan Homoliak†‡ Kamil Malinka† Petr Hanáček†

† Department of Intelligent Systems, Faculty of Information Technology, Brno University of Technology
‡ Singapore University of Technology and Design

Abstract—Tor is a low-latency free anonymization network
based on onion routing. In Tor, directory servers maintain a
list of all nodes. It is, however, possible for a powerful adversary
(e.g., law enforcement agencies) to seize or compromise enough
directory servers and thus forge that list. Therefore, clients
that obtained such a forged list of nodes can be effectively
deanonymized. As a countermeasure, we propose to utilize a
permissioned blockchain with a single voting committee that
is privately “elected” by a verifiable random function (VRF).
Since the blockchain provides us with integrity guarantees by
design, we increase trust in the directory servers by decentralizing
management of Tor nodes present in the shared list. We apply
skiplist as an optimization reducing a validation overhead of
newly joined nodes and clients. The proposed approach has only
a small performance impact on the existing Tor infrastructure.

I. INTRODUCTION

Tor is a low-latency and free anonymization service based
on onion routing. Clients of Tor connect to the network
and get a list of Tor nodes to build a Tor circuit that
provides anonymity. In the past, there were presented sev-
eral deanonymization attacks – e.g., circuit fingerprinting
attacks [1] or linkability of several Tor streams sent over one
Tor circuit [2], AS-level routing attacks [18]. However, all of
these attacks are orthogonal to our work.

In this paper, we focus on an attack that misuses trust
in publicly known directory servers, whose majority can be
compromised/seized by the adversary. Directory servers [5]
provide a list of Tor nodes on request. There are ten directory
servers, and it is enough that the majority of directory servers
provide the client with the same list to accept a piece of
information contained in the list (i.e., Tor nodes). We assume
that it is possible for a strong adversary to compromise the
majority (i.e., six) directory servers that feed the client with a
forged list of nodes that are controlled by the adversary.

The consequences of this attack are similar as in the case
that the client is compromised by an eclipse attack [4], [3] [6]
– obtaining a list of Tor nodes that were previously valid but
currently are compromised by the attacker, while real directory
servers already invalidated them. Under such circumstances,
a client builds a Tor circuit that consists only of adversary-
controlled nodes, making the anonymization ineffective. This
happens because of the adversary who controls all Tor nodes
known by a client has the routing information necessary to

978-1-7281-1328-9/19/$31.00 c©2019 IEEE. This work was funded by
project VUT IGA FIT-S-17-4014. Next, this work was supported by the NRF,
Prime Minister’s Office, Singapore, under its National Cybersecurity R&D
Programme (Award No. NRF2016NCR-NCR002-028) and administered by
the National Cybersecurity R&D Directorate.

deanonymize the client. The adversary knows: (1) a source of
the message, (2) each node in the Tor circuit used to pass the
message, (3) a destination of the message, and optionally even
(4) a payload of the message (if no encryption is used).

Proposed Approach: As a countermeasure to this poten-
tial vulnerability, we propose to incorporate a permissioned
blockchain with a single voting committee into Tor infrastruc-
ture. Because each block of the blockchain contains a hash of
the previous block, it allows us to check continuity by linking
the previous versions of the Tor nodes with the current version.
In addition, we propose version tracking of the Tor nodes
that serve as peers of the blockchain, while computing their
reputation based on identification and geographic location.
This setting allows us to distribute trust among all the peers
of these blockchains, requiring a consensus of the majority of
the committee to add a new peer.

II. BACKGROUND

A. TOR – The Onion Router

Tor is an anonymization network based on the onion routing
principle [10], [11]. In 2019, there are 10 (only 9 until 2018)
Tor directory servers worldwide and their public keys and IP
addresses are hard-coded into the source code of Tor clients.
Directory servers maintain a list of currently active and trusted
Tor nodes. A Tor node is a router capable of being a part of the
Tor circuit – a set of Tor nodes through which the messages
are passed in a defined order, while each node knows only an
address of the previous node and the next node in the path.

When a Tor client initiates a new connection to the Tor
network, it first builds a Tor circuit. Upon building a Tor
circuit, the client gets a list of available nodes from the
directory servers. When the information from these servers
differs, the correct information is based on the information
consistency among the majority of servers [7]. Then, the client
selects three (or more) Tor nodes from such a consistent list.

The current architecture of Tor consists of the following
components: (1) Client, (2) Tor Nodes, and (3) Directory
Servers. The process of creating a new circuit is depicted in
Figure 1 and consists of the following steps:1

1) The client does an initial connection to the Tor network.
2) The client asks directory servers for a list of Tor nodes.
3) The client receives a list of Tor nodes.
4) The client picks three (or more) arbitrary Tor nodes.

1Note that we abstract ourselves from modeling the communication behind
Tor nodes, such as hidden services.

29

Directory
Servers

DS1
DS2
.
.
DS10

Tor nodes

Node1
Node2
.
.
.
.
.
.
.
.
.
.
NodeN

Client

1,2
3

4,5

6

Fig. 1: Current architecture of Tor (simplified).

5) The client builds a Tor circuit from these picked nodes.
6) The client uses the Tor circuit for communication.

B. Blockchain

A blockchain is a linked list of cryptographically connected
blocks that can store various data in an append-only fashion –
preventing modification of previously stored data and hence
ensuring the integrity and immutability of its history. All
operations with the blockchain are decentralized among the
peers participating in the consensus protocol. In general, there
exist permissioned and permissionless blockchains [12]. The
former incorporates centralization features into the protocol,
partially including the trust, hence only peers approved by
a single entity (or federation) may join the consensus (e.g.,
Hyperledger [16]). In contrast, the permissionless blockchains
are decentralized and trust-less, hence any peer may join
the consensus protocol immediately (e.g., blockchains with
Nakamoto consensus [17]).

Blockchains are also divided [12] according to the election
mechanism of the leader/committee that produces a new
block into: (1) single-node consensus (e.g., Bitcoin [17]), (2)
single-committee consensus (e.g., Casper the Friendly Finality
Gadget [13]), and (3) multiple-committee consensus (e.g.,
sharding [15]). Further, blockchains are divided according to
in-band investment to [12]: (1) Proof-of-Work, (2) Proof-of-
Stake, (3) Proof-of-Capacity, and (4) Proof-of-Elapsed-Time.

III. ATTACKS ON TOR DIRECTORY SERVERS

Because there are ten directory servers in total, it is required
for at least six of them to contain the same piece of information
to consider it as trusted. Directory servers are distributed
worldwide and run by different parties – only one of them
is the Tor Foundation. The adversary may be able to com-
promise/seize six servers. This attack is potentially possible
to execute by a powerful adversary (e.g., law enforcement
agencies)2 or by compromising required number of servers.

2Note that at the time of writing, four directory servers lay within the same
jurisdiction (https://metrics.torproject.org/rs.html#search/flag:authority). Also
note that when there were only nine directory servers in 2018, four of them
laid within the same jurisdiction.

In the case of such an attack is successful, the list of Tor
nodes can be forged to contain the only adversary controlled
nodes. This will considerably affect security properties of the
whole system. A Tor circuit only consisting of adversary-
controlled nodes does not guarantee an anonymity to the
client. Therefore, a client that trusts the information from the
adversary-controlled list is effectively deanonymized.

IV. PROPOSED APPROACH

The proposed architecture is depicted in Figure 2 and
consists of the following components: (1) Client, (2) Tor Nodes
(TNs), (3) Directory servers (DSes), (4) Blockchain Peers
(BPs), where

BPs = DSes ∪ N ; N ⊆ TNs. (1)

In contrast to the current version of Tor, we have added a role
of peers that run the blockchain, which consist of directory
servers and a subset of the Tor nodes that decided to participate
in a consensus protocol of the blockchain.

The peers append two types of transactions that manage a
list of the peers and a list of the Tor nodes, respectively. In
the following, we detail both transactions types, the consensus
mechanism, and finally the steps required to build a Tor circuit
with our approach.

A. Consensus-Level Transactions
These transactions realize updates to the list of all peers

running the blockchain. Therefore, consistency of the current
list can be verified with the previously known state, which
ensures continuity and makes the attack that forges the list
of peers significantly harder. We use directory servers when
connecting to the Tor network for the very first time to get
a full version of the blockchain and the list of the peers –
the consistency of the blockchain is non-interactively validated
against (1) the genesis block that is hard-coded in the client
and (2) rules of the consensus protocol (see section IV-C).
Note that peers are implicitly removed from this list if they
are removed from the list of Tor nodes.

B. Application-Level Transactions
Data of these transactions update the list of Tor nodes that

can be used to build a Tor circuit. The management of this list
is done in the same way as in the previous case. Tor nodes
can be removed from the list if they are inactive for a certain
period of time or considered as compromised (i.e., decisions
are subject to the Byzantine fault tolerant (BFT) voting).

C. Details of Proposed Blockchain
Since Tor is a free anonymization network running by

volunteers, it is not feasible to apply any Proof-of-Work
blockchain here – no resources must be wasted. On the
other hand, adversarial centralization of consensus power must
be made difficult, which is a challenging problem in the
setting without incentive mechanisms, such as rewards for
voting. Therefore, we propose to apply a public permissioned
blockchain with an equal voting power/weight of each peer,

30

while each peer needs to provide functionality of a Tor node
and be approved by reputation-based BFT committee voting
to join a protocol. Each peer has its identification (e.g., public
IP address) and associated public/private keypair.

When a Tor node wants to join the consensus protocol, it
gossips its public key and identification, signed by its private
key. Upon receiving a new peer transaction, all peers of the
committee validate: (1) the existence of the Tor node using
its identification, (2) its correct functionality3, and (3) the
previous invalidation records bound to its identification as well
as the geographical location for the purpose of computing
a reputation. Note that diversity in geographical locations
increases a reputation. Afterward, each peer individually de-
cides whether the new peer is appended to the list of the
peers, while at least 2

3 + 1 consensus is required to append a
corresponding consensus-level transaction to the blockchain.
Another message that manages the list of peers is a peer
invalidation (e.g., due to unavailability or compromising).
When a peer is invalidated, it is not allowed to run the protocol
and to join the protocol again, it has to obtain approval from
2
3M+1 members of some committee, subject to an assessment
of the reputation.4

Consensus within a Committee: The consensus among
peers starts by selecting a single committee that consists of
M members. The committee is selected based on a lottery
approach – each participant runs a verifiable random function
(VRF) [14] with input consisting of a private key, a random
seed from the previous block, and the height of the block
(i.e., input depends only on the blockchain state). Then each
peer privately observes whether the output is under a certain
threshold T ,5 and if so, the peer is a candidate for a committee
member and it must broadcast (by gossiping) the value of VRF
and all its votes (i.e., transactions) related to the round. Under
the model of eventual network synchrony, each peer selects
M nodes that provided the lowest value of VRF to form a
committee in a non-interactive fashion – i.e., the votes were
already cast, so each node can determine which transactions
were approved by at least 2

3M + 1 of known committee
members. Afterward, transactions are unambiguously ordered,
the lowest observed VRF output is used as a random seed
of the block, and a new block is created and gossiped to the
network. Note that if a peer receives a block with a higher or
the same value of block’s random seed than a peer is aware
of, the propagation of that block is stopped.

If there are no online committee members – no valid
transactions are received within a specific time frame (e.g.,
one hour), an empty block is appended by each peer, causing
a reset of the random seed by computing a hash of the previous
seed, which in turn increases a chance that a new committee
will contain online nodes. Then a peer gossips the block to all

3Note that validation of the functionality is done only by a small number
of peers, and it does not cause a DoS attack on the target node.

4Note that directory servers cannot be invalidated and also note that nodes
may change their identification (e.g., IP addresses); however, we assume that
this requires resources spent.

5T is the network adjusted parameter.

Directory
Servers

DS1
DS2
.
.
DS10

Tor nodes

Node1
Node2
.
.
.
.
.
.
.
.
.
.
NodeN

Client

1
2,3

6

P
e
e
r
s

4,5

Fig. 2: Proposed architecture of peers that are participating the
consensus of the blockchain (depicted in a green frame).

peers, who upon receiving the block validate: (1) block header
– i.e., binding to the previous block header, (2) correctness of
all signatures present in the block, and (3) a sufficient number
of signatures in each transaction of the block.

Check-Pointing: In order to avoid reverting the full
blockchain history by adversaries that temporarily control the
majority of the consensus power (i.e., 51% attack), we propose
check-pointing of blocks once per day (e.g., every 24 blocks),
accomplished by a present committee.

Fork Choice Rule – the Strongest Chain: When the
client decides whether to trust in a particular chain and adapt
it, the strongest chain rule is applied, which is a standard way
in other existing blockchains. In our approach, the strongest
chain rule selects the block with the smallest value of random
seed. This rule allows for changing the history up to the most
recent checkpoint. Although this does not protect us from 51%
attack between two consecutive checkpoints, it provides us
with a relatively high level of trust regardless of whether the
attack was done previously or is currently being held:

• If the attack occurred in the past and the blockchain has
been fixed already, then the client is safe, as it obtained
the most recent version of the blockchain.

• If the attack is currently being held by an attacker
strong enough to seize most of the consensus power (or
only the of directory servers if the client connects for
the first time), then the client will temporarily use a
forged list of nodes – resulting into deanonymization in
that particular session. However, the blockchain will be
eventually fixed (by flipping the majority of peers to be
honest) and the client’s next connections will be anony-
mous. The honest node can “repair” the current version
of the blockchain within two checkpoints. Nevertheless,
repairing the blockchain after the next checkpoint would
cause a hard fork, and it would require newly joined users
to always use an updated version of Tor clients.

31

D. Building a Tor Circuit
With our proposed approach, the process of building a Tor

circuit works as follows (see Figure 2):
1) The client makes an initial connection to the network
2) The client downloads and validates the blockchain (or its

missing part) from several randomly selected known valid
peers – if peers provide different blockchains, then the
client randomly selects other peers, until at least 2

3M +1
of peers provide the consistent version.

3) The client can optionally repeat the previous step using
peers from the consistent part of the newly added blocks.

4) The client randomly picks three (or more) nodes from the
actual list of valid Tor nodes.

5) The client builds a Tor circuit from the picked nodes.
6) The client communicates using the Tor circuit.

E. Optimizations
Although transactions and blocks of our approach are

sparse, each new client and Tor node joining the protocol
must download and validate the full blockchain, which may
take a while mainly due to several signature verifications
per each transaction in a block. Therefore, we propose to
use forward links of skiplist [19] with witness co-signing
protocol [20] (Co-Si) run within a committee. Co-Si with
skiplist retrospectively builds forward links from the past to
the future blocks, upon creating the current blocks (as made
in Chainiac [21]). This enables new client and Tor nodes
to skip signature validation overhead after downloading the
blockchain while relying on committees that co-signed the
forward links.

V. DISCUSSION

Blockchain, in general, allows us for checking integrity and
continuity, as it is an append-only data structure, in which
each block is cryptographically linked to the previous one.
The application of permissioned blockchain with reputation
assessment allows us to trust more in the list of Tor nodes and
the list of peers they contain. This is because to significantly
influence the protocol, the adversary would have to control
more than a half of the peers (51% attack), which is protected
by reputation-based voting that also favors diverse geographic
locations. On the other hand, using a single committee for
reaching the consensus requires 2

3M + 1 peers to vote within
specified time-frame, which may be a potential issue when
more than 1

3M peers are not voting (either intentionally or
they are temporarily disconnected). To cope with this issue,
an empty block is appended by each peer, which resets the
committee. Since the transaction and blocks of the proposed
approach are sparse, the empty blocks do not deteriorate the
performance of the protocol and consume only a minimal
space.

VI. CONCLUSION

In this paper, we proposed to use the permissioned
blockchains distributed among some Tor nodes, serving as
blockchain peers. The blockchain holds and versions a list

of its valid peers as well as the list of all Tor nodes. This
allows a Tor client to trust more in the validity of these lists
and the information present in them. Thanks to the properties
of blockchains, and decentralization, in particular, we believe
that our approach provides a higher level of trust in Tor infras-
tructure in contrast to the current state (see subsection II-A).
In future work, we plan to evaluate our approach by simulation
experiments and make a proof-of-concept implementation.

REFERENCES

[1] Kwon, A., AlSabah, M., Lazar, D., Dacier, M. and Devadas, S., 2015,
August. Circuit fingerprinting attacks: Passive deanonymization of tor
hidden services. In 24th USENIX Security Symposium.

[2] Blond, S.L., Manils, P., Abdelberi, C., Kaafar, M.A.D., Castelluccia,
C., Legout, A. and Dabbous, W., 2011. One bad apple spoils the bunch:
exploiting P2P applications to trace and profile Tor users. arXiv preprint
arXiv:1103.1518.

[3] A. Singh, “Eclipse attacks on overlay networks: Threats and defenses”
in IEEE INFOCOM, 2006.

[4] E. Heilman and A. Kendler, “Eclipse Attacks on Bitcoin’s Peer-to-Peer
Network,” in USENIX Security Symposium 2015 (pp. 129-144).

[5] I. Ahmad, M. Saddique, U. Pirzada, M. Zohaib, A. Ali and M. Khan, “A
New Look at the Tor Anonymous Communication System” in Journal
of Digital Information Management, 16(5), p.223., 2018

[6] Q. Tan, Y. Gao, J. Shi, X. Wang, B. Fang and Z. H. Tian, “Towards a
Comprehensive Insight into the Eclipse Attacks of Tor Hidden Services”
in IEEE Internet of Things Journal, 2018.

[7] torproject.org, “Tor Metrics - Glossary”, 2018. [Online]. Available:
https://metrics.torproject.org/glossary.html#consensus

[8] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf
and S. Capkun, “On the security and performance of proof of work
blockchains” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (pp. 3-16), October 2016

[9] I. C. Lin, and T. C. Liao, “A Survey of Blockchain Security Issues and
Challenges” in IJ Network Security, 19(5), pp.653-659, 2017

[10] P. Syverson, R. Dingledine and N. Mathewson, “Tor: The second
generation onion router” in Usenix Security, 2004

[11] D. Goldschlag, M. Reed, P. Syverson, “Onion routing” in Communica-
tions of the ACM, 1;42(2):39-41, Feb 1999

[12] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S.
Meiklejohn, and G. Danezis, “Consensus in the age of blockchains”
in arXiv preprint arXiv:1711.03936, 2017

[13] V. Buterin, and V. Griffith, “Casper the friendly finality gadget” in arXiv
preprint arXiv:1710.09437, 2017

[14] Gilad Y, Hemo R, Micali S, Vlachos G, Zeldovich N. Algorand: Scaling
byzantine agreements for cryptocurrencies. InProceedings of the 26th
Symposium on Operating Systems Principles 2017 Oct 14 (pp. 51-68).
ACM.

[15] Fynn, E. and Pedone, F., 2018. Challenges and pitfalls of partitioning
blockchains. arXiv preprint arXiv:1804.07356.

[16] Hyperledger, ”Hyperledger architecture, volume 1: Consensus,” 2017.
[Online]. Available: https://www.hyperledger.org/wp-content/uploads/
2017/08/Hyperledger

[17] S. Nakamoto, ”Bitcoin: A peer-to-peer electronic cash system,” 2008.
[18] Sun Y, Edmundson A, Vanbever L, Li O, Rexford J, Chiang M, Mittal P.

RAPTOR: Routing Attacks on Privacy in Tor. In24th USENIX Security
Symposium (USENIX Security 15) 2015 (pp. 271-286).

[19] Munro JI, Papadakis T, Sedgewick R. Deterministic skip lists. In
Proceedings of the third annual ACM-SIAM symposium on Discrete
algorithms 1992 Sep 1 (pp. 367-375). Society for Industrial and Applied
Mathematics.

[20] Syta E, Tamas I, Visher D, Wolinsky DI, Jovanovic P, Gasser L,
Gailly N, Khoffi I, Ford B. Keeping authorities” honest or bust” with
decentralized witness cosigning. In2016 IEEE Symposium on Security
and Privacy (SP) 2016 May 22 (pp. 526-545).

[21] Nikitin K, Kokoris-Kogias E, Jovanovic P, Gailly N, Gasser L, Khoffi I,
Cappos J, Ford B. CHAINIAC: Proactive Software-Update Transparency
via Collectively Signed Skipchains and Verified Builds. In26th USENIX
Security Symposium (USENIX Security 17) 2017 (pp. 1271-1287).

32

